Вычисление нормальных векторов для плоскостей. Уравнение плоскости


При изучении уравнений прямой линии на плоскости и в трехмерном пространстве мы опираемся на алгебру векторов. При этом особое значение имеют направляющий вектор прямой и нормальный вектор прямой. В этой статье мы подробно рассмотрим нормальный вектор прямой. Начнем с определения нормального вектора прямой, приведем примеры и графические иллюстрации. Следом перейдем к нахождению координат нормального вектора прямой по известным уравнениям прямой, при этом покажем подробные решения задач.

Навигация по странице.

Нормальный вектор прямой – определение, примеры, иллюстрации.

Для понимания материала Вам необходимо иметь четкое представление о прямой линии, о плоскости, а также знать основные определения, связанные с векторами. Поэтому рекомендуем сначала освежить в памяти материал статей прямая на плоскости , прямая в пространстве , представление о плоскости и .

Дадим определение нормального вектора прямой.

Определение.

Нормальный вектор прямой - это любой ненулевой вектор, лежащий на любой прямой перпендикулярной данной.

Из определения нормального вектора прямой понятно, что существует бесконечное множество нормальных векторов данной прямой.

Определение нормального вектора прямой и определение направляющего вектора прямой позволяют заключить, что любой нормальный вектор данной прямой перпендикулярен любому направляющему вектору этой прямой.

Приведем пример нормального вектора прямой.

Пусть на плоскости задана Oxy . Одним из множества нормальных векторов координатной прямой Ox является координатный вектор . Действительно, вектор ненулевой и лежит на координатной прямой Oy , которая перпендикулярна оси Ox . Множество всех нормальных векторов координатной прямой Ox в прямоугольной системе координат Oxy можно задать как .

В прямоугольной системе координат Oxyz в трехмерном пространстве нормальным вектором прямой Oz является вектор . Координатный вектор также является нормальным вектором прямой Oz . Очевидно, что любой ненулевой вектор, лежащий в любой плоскости, перпендикулярной оси Oz , будет нормальным вектором прямой Oz .

Координаты нормального вектора прямой – нахождение координат нормального вектора прямой по известным уравнениям этой прямой.

Если рассматривать прямую в прямоугольной системе координат Oxy , то ей будут соответствовать уравнение прямой на плоскости некоторого вида, а нормальные векторы прямой будут определяться своими координатами (смотрите статью ). При этом встает вопрос: «как найти координаты нормального вектора прямой, когда нам известно уравнение этой прямой»?

Найдем ответ на поставленный вопрос для прямых, заданных на плоскости уравнениями различного вида.

Если прямую линию на плоскости определяет общее уравнение прямой вида , то коэффициенты А и B представляют собой соответствующие координаты нормального вектора этой прямой.

Пример.

Найдите координаты какого-нибудь нормального вектора прямой .

Решение.

Так как прямая задана общим уравнением, то мы сразу можем записать координаты ее нормального вектора – ими являются соответствующие коэффициенты перед переменными x и y . То есть, нормальный вектор прямой имеет координаты .

Ответ:

Одно из чисел A или B в общем уравнении прямой может равняться нулю. Это не должно Вас смущать. Рассмотрим на примере.

Пример.

Укажите любой нормальный вектор прямой .

Решение.

Нам дано неполное общее уравнение прямой. Его можно переписать в виде , откуда сразу видны координаты нормального вектора этой прямой: .

Ответ:

Уравнение прямой в отрезках вида или уравнение прямой с угловым коэффициентом легко приводятся к общему уравнению прямой, откуда и находятся координаты нормального вектора этой прямой.

Пример.

Найдите координаты нормального вектора прямой .

Решение.

От уравнения прямой в отрезках очень легко перейти к общему уравнению прямой: . Следовательно, нормальный вектор этой прямой имеет координаты .

Ответ:

Если прямую определяет каноническое уравнение прямой на плоскости вида или параметрические уравнения прямой на плоскости вида , то координаты нормального вектора получить немного сложнее. Из этих уравнений сразу видны координаты направляющего вектора прямой - . Найти координаты нормального вектора этой прямой позволяет и .

Также можно получить координаты нормального вектора прямой, если привести каноническое уравнение прямой или параметрические уравнения прямой к общему уравнению. Для этого производят следующие преобразования:

Как способ предпочесть – решать Вам.

Покажем решения примеров.

Пример.

Найдите какой-нибудь нормальный вектор прямой .

Решение.

Направляющим вектором прямой является вектор . Нормальный вектор прямой перпендикулярен вектору , тогда и равно нулю: . Из этого равенства, придав n x произвольное ненулевое действительное значение, найдем n y . Пусть n x =1 , тогда , следовательно, нормальный вектор исходной прямой имеет координаты .

Второй способ решения.

Перейдем от канонического уравнения прямой к общему уравнению: . Теперь стали видны координаты нормального вектора этой прямой .

Ответ:

Способы задания плоскости.

Взаимное расположение плоскостей.

Две плоскости в пространстве могут совпадать. В этом случае они имеют, по крайней мере, три общие точки.

Две плоскости в пространстве могут пересекаться. Пересечением двух плоскостей является прямая линия, что устанавливается аксиомой: если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

В этом случае возникает понятие угла между пересекающимися плоскостями. Отдельный интерес представляет случай, когда угол между плоскостями равен девяноста градусам. Такие плоскости называют перпендикулярными.

Наконец, две плоскости в пространстве могут быть параллельными, то есть, не иметь общих точек.

Также интересны случаи, когда несколько плоскостей пересекаются по одной прямой и несколько плоскостей пересекаются в одной точке.

Перечислим основные способы задания конкретной плоскости в пространстве.

Во-первых, плоскость можно задать, зафиксировав три не лежащие на одной прямой точки пространства. Этот способ основан на аксиоме: через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.

Если в трехмерном пространстве зафиксирована прямоугольная система координат и задана плоскость с помощью указания координат трех ее различных точек, не лежащих на одной прямой, то мы можем написать уравнение плоскости, проходящей через три заданные точки.

Два следующих способа задания плоскости являются следствием из предыдущего. Они основаны на следствиях из аксиомы о плоскости, проходящей через три точки:

· через прямую и не лежащую на ней точку проходит плоскость, притом только одна;

· через две пересекающиеся прямые проходит единственная плоскость.

Четвертый способ задания плоскости в пространстве основан на определении параллельных прямых. Напомним, что две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Таким образом, указав две параллельные прямые в пространстве, мы определим единственную плоскость, в которой эти прямые лежат.

Если в трехмерном пространстве относительно прямоугольной системы координат задана плоскость указанным способом, то мы можем составить уравнение плоскости, проходящей через две параллельные прямые.

Признак параллельности двух плоскостей дает нам еще один способ задания плоскости. Вспомним формулировку этого признака: если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то такие плоскости параллельны. Следовательно, мы можем задать конкретную плоскость, если укажем точку, через которую она проходит и плоскость, которой она параллельна.



В курсе средней школы на уроках геометрии доказывается следующая теорема: через фиксированную точку пространства проходит единственная плоскость, перпендикулярная к данной прямой. Таким образом, мы можем задать плоскость, если укажем точку, через которую она проходит, и прямую, перпендикулярную к ней.

Если в трехмерном пространстве зафиксирована прямоугольная система координат и задана плоскость указанным способом, то можно составить уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.

Вместо прямой, перпендикулярной к плоскости, можно указать один из нормальных векторов этой плоскости. В этом случае есть возможность написать общее уравнение плоскости.

Хорошее представление о прямой линии начинается с момента, когда вместе с ее образом одновременно возникают образы ее направляющих и нормальных векторов. Аналогично, при упоминании о плоскости в пространстве, она должна представляться вместе со своим нормальным вектором. Почему так? Да потому что во многих случаях удобнее использовать нормальный вектор плоскости, чем саму плоскость.

Сначала дадим определение нормального вектора плоскости, приведем примеры нормальных векторов и необходимые графические иллюстрации. Далее поместим плоскость в прямоугольную систему координат в трехмерном пространстве и научимся определять координаты нормального вектора плоскости по ее уравнению.

2.1. Нормальный вектор плоскости – определение, примеры, иллюстрации.

Определение. Нормальный вектор плоскости - это любой ненулевой вектор, лежащий на прямой перпендикулярной к данной плоскости.

Из определения следует, что существует бесконечное множество нормальных векторов данной плоскости.

Так как все нормальные векторы заданной плоскости лежат на параллельных прямых, то все нормальные векторы плоскости коллинеарны. Другими словами, если - нормальный вектор плоскости , то вектор при некотором ненулевом действительном значении t также является нормальным вектором плоскости .

Также следует заметить, что любой нормальный вектор плоскости можно рассматривать как направляющий вектор прямой, перпендикулярной к этой плоскости.

Множества нормальных векторов параллельных плоскостей совпадают, так как прямая, перпендикулярная к одной из параллельных плоскостей, перпендикулярна и ко второй плоскости.

Из определения перпендикулярных плоскостей и определения нормального вектора плоскости следует, что нормальные векторы перпендикулярных плоскостей перпендикулярны.

Пример нормального вектора плоскости. Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz. Координатные векторы являются нормальными векторами плоскостей Oyz, Oxz и Oxy соответственно. Это действительно так, потому что векторы ненулевые и лежат на координатных прямых Ox, Oy и Oz соответственно, которые перпендикулярны координатным плоскостям Oyz, Oxz и Oxy соответственно.

2.2. Координаты нормального вектора плоскости – нахождение координат нормального вектора плоскости по уравнению плоскости.

Найдем координаты нормального вектора плоскости, если известно уравнение плоскости в прямоугольной системе координат Oxyz.

Общее уравнение плоскости вида определяет в прямоугольной системе координат Oxyz плоскость, нормальным вектором которой является вектор . Таким образом, чтобы найти координаты нормального вектора плоскости нам достаточно иметь перед глазами общее уравнение этой плоскости.

Пример. Найдите координаты какого-либо нормального вектора плоскости .

Решение. Нам дано общее уравнение плоскости, коэффициенты перед переменными x, y и z представляют собой соответствующие координаты нормального вектора этой плоскости. Следовательно, - один из нормальных векторов заданной плоскости. Множество всех нормальных векторов этой плоскости можно задать как , где t - произвольное действительное число, отличное от нуля.

Пример. Плоскость задана уравнением . Определите координаты ее направляющих векторов.

Решение. Нам дано неполное уравнение плоскости. Чтобы стали видны координаты ее направляющего вектора, перепишем уравнение в виде . Таким образом, нормальный вектор этой плоскости имеет координаты , а множество всех нормальных векторов запишется как .

Уравнение плоскости в отрезках вида , как и общее уравнение плоскости, позволяет сразу записать один из нормальных векторов этой плоскости – он имеет координаты .

В заключении скажем, что с помощью нормального вектора плоскости могут быть решены различные задачи. Самыми распространенными являются задачи на доказательство параллельности или перпендикулярности плоскостей, задачи на составление уравнения плоскости, а также задачи на нахождение угла между плоскостями и на нахождение угла между прямой и плоскостью.

Высшая математика I.

Вариант 2.13

1.(С03.РП) Составить уравнение прямой, проходящей через точку перпендикулярно прямой
.

Вектор
- нормальный вектор прямой

,

Запишем уравнение АВ :

Ответ:
.

2.(8Т3.РП) Составить общее уравнение прямой, проходящей через точку
и точку пересечения прямых
и
.

Найдем координаты точки В – точку пересечения прямых
и
:

умножили второе уравнение на -2, а теперь их сложим

Получили координаты т. В (
).

Запишем уравнение АВ :

Ответ:
.

3.(Т43.РП) Написать общее уравнение плоскости, проходящей через точки
,
перпендикулярно плоскости
.

Общее уравнение плоскости имеет вид A(x-x 1 )+B(y-y 1 )+C(z-z 1 ) =0

М 1 (4,-3,3), то можно записать:

A(x-4)+B(y+3)+C(z-3)=0

Т.к. плоскость проходит через точку М 2 (1,1,-2), то можно записать:

A(x-1)+B(y-1)+C(z+2)=0

Искомая плоскость перпендикулярна плоскости заданной уравнением: По условию перпендикулярности плоскостей:

А 1 A 2 +B 1 B 2 +C 1 C 2 =0

1 × А+(-3) × B+5 × C=0

А=3B-5C

Подставим в нижнее уравнение

4.(303) Найти расстояние от точки
до прямой
.

Найдем точку пересечения перпендикуляра проходящего через точку А . Назовем ее Н(x , y , z ) .

АН:3(x-2)+4(y+1)+2z=0 3x+4y+2z-2=0

Параметрические уравнения прямой имеют вид:

т.Н (4,-3,1)

5.(5Б3.РП) Найти те значения параметров и , при которых прямые
и
параллельны.

Для вычисления направляющего вектора используем формулу:

Вычислим направляющий вектор прямой

Т.к. A||B

Получим систему уравнений:

Ответ: А=0, В=-1.

6.(733) Прямая параллельна плоскости , пересекает прямую
и проходит через точку
. Найти ординату точки пересечения прямой с плоскостью
.

Найдем k :

Запишем параметрические уравнения прямой :

Подставим х,у, z в уравнение L и получим значение t.

т.В (8;-8;5) принадлежит L

Запишем параметрические уравнения L:

Подставим данные значения в уравнение :


Найдем ординату точки пересечения

Ответ: -2,5.

7.(983). Найти радиус окружности, имеющей центр в точке
, если она касается прямой
.

Для того, чтобы найти радиус окружности, можно найти расстояние от точки А до данной прямой и данное расстояние будет равно радиусу.

Воспользуемся формулой:

8. Дана кривая .

8.1. Доказать, что данная кривая – эллипс.

8.2.(ТТ3.РП) Найти координаты центра его симметрии.

8.3.(4Б3.РП) Найти его большую и малую полуоси кривой.

8.4.(2П3) Записать уравнение фокальной оси.

8.5. Построить данную кривую.

Каноническое уравнение эллипса имеет вид

Приведём уравнение кривой к каноническому виду:

Т.к. искомое не содержит ху , то остаемся в старой системе координат.

Приняв за новое начало точку
, применим формулы преобразования координат

Это соответствует общему виду уравнения эллипса, у которого большая полуось равна 4, а малая полуось равна 2.

Фокальные радиус – векторы данного эллипса соответствуют уравнению

9. Дана кривая
.

9.1. Доказать, что данная кривая – парабола.

9.2.(Л33). Найти значение её параметра .

9.3.(2Т3.РП). Найти координаты её вершины.

9.4.(7Б3). Написать уравнение её оси симметрии.

9.5. Построить данную кривую.

Каноническое уравнение параболы имеет вид: y 2 =2px

В нашем примере

Т.е. данная кривая – парабола, симметричная относительно оси ординат.

При этом 2р=-12

р=-6, следовательно ветви параболы обращены в вниз.

Вершина параболы находится в точке (-3;-2)

Уравнение оси симметрии данной параболы: х=-3

10. Дана кривая .

10.1. Доказать, что данная кривая – гипербола.

10.2.(793.РП). Найти координаты центра её симметрии.

10.3.(8Д3.РП). Найти действительную и мнимую полуоси.

10.4.(ПС3.РП). Написать уравнение фокальной оси.

10.5. Построить данную кривую.

Каноническое уравнение гиперболы имеет вид

Преобразуем уравнение воспользовавшись формулами поворота оси координат:

Получим:

Найдём l из условия:

т.е. приравняем коэффициент при x`y` к нулю

решения нормального

  • Основная образовательная программа основного общего образования оглавление

    Основная образовательная программа

    ... Векторы . Длина (модуль) вектора . Равенство векторов . Коллинеарные векторы . Координаты вектора . Умножение вектора на число, сумма векторов , разложение вектора ... решение задач развития ребёнка, отсутствующих в содержании образования нормально ...

  • Образовательная программа основного общего образования (фгос ооо)

    Образовательная программа

    ... векторами прямых решения ... обеспечение рациональной организации двигательного режима, нормального физического развития и двигательной подготовленности...

  • Примерная основная образовательная программа

    Программа

    ... векторами , устанавливать перпендикулярность прямых . Выпускник получит возможность: овладеть векторным методом для решения ... обеспечение рациональной организации двигательного режима, нормального физического развития и двигательной подготовленности...

  • Прямая на плоскости.

    Общее уравнение прямой.

    Прежде чем вводить общее уравнение прямой на плоскости введем общее определение линии.

    Определение . Уравнение вида

    F (x , y )=0 (1)

    называется уравнением линии L в заданной системе координат, если этому удовлетворяют координаты х и у любой точки, лежащей на линии L , и не удовлетворяют координаты никакой точки, не лежащей на этой линии.

    Степень уравнения (1) определяет порядок линии . Будем говорить, что уравнение (1) определяет (задает) линию L .

    Определение . Уравнение вида

    Ах+Ву+С=0 (2)

    при произвольных коэффициентах А , В , С (А и В одновременно не равны нулю) определяют некоторую прямую в прямоугольной системе координат. Данное уравнение называется общим уравнением прямой .

    Уравнение (2) есть уравнение первой степени, таким образом, каждая прямая есть линия первого порядка и, обратно, каждая линия первого порядка есть прямая.

    Рассмотрим три частных случая, когда уравнение (2) является неполным, т.е. какой-то из коэффициентов равен нулю.

    1)Если С=0 , то уравнение имеет вид Ах+Ву=0 и определяет прямую, проходящую через начало координат т.к. координаты (0,0) удовлетворяют данному уравнению.

    2)Если В=0 (А≠0 ), то уравнение имеет вид Ах+С=0 и определяет прямую, параллельную оси ординат. Разрешив это уравнение относительно переменной х получим уравнение вида х=а , гдеа=-С/А , а — величина отрезка, который отсекает прямая на оси абсцисс. Если а=0 (С=0 Оу (рис.1а). Таким образом, прямая х=0 определяет ось ординат.

    3)Если А=0 (В≠0 ), то уравнение имеет вид Ву+С=0 и определяет прямую, параллельную оси абсцисс. Разрешив это уравнение относительно переменной у получим уравнение вида у= b , гдеb =-С/В , b — величина отрезка, который отсекает прямая на оси ординат. Если b =0 (С=0 ), то прямая совпадает с осью Ох (рис.1б). Таким образом, прямая у=0 определяет ось абсцисс.


    а) б)

    Уравнение прямой в отрезках .

    Пусть дано уравнение Ах+Ву+С=0 при условии, что ни один из коэффициентов не равен нулю. Перенесем коэффициент С в правую часть и разделим на обе части.

    Используя обозначения, введенные в первом пункте, получим уравнение прямой «в отрезках »:

    Оно имеет такое название потому, что числа а и b являются величинами отрезков, которые прямая отсекает на осях координат.

    Пример 2х-3у+6=0 . Составить для этой прямой уравнение «в отрезках» и построить эту прямую.

    Решение

    Чтобы построить эту прямую, отложим на оси Ох отрезок а=-3 , а на оси Оу отрезок b =2 . Через полученные точки проведем прямую (рис.2).


    Уравнение прямой с угловым коэффициентом.

    Пусть дано уравнение Ах+Ву+С=0 при условии, что коэффициент В не равен нулю. Выполним следующие преобразования

    Уравнение (4), где k =- A / B , называется уравнением прямой с угловым коэффициентом k .

    Определение . Углом наклона данной прямой к оси Ох назовем угол α , на который нужно повернуть ось Ох , чтобы её положительное направление совпало с одним из направлений прямой.

    Тангенс угла наклона прямой к оси Ох равен угловому коэффициенту, т.е k = tgα . Докажем, что –А/В действительно равно k . Из прямоугольного треугольника ΔОАВ (рис.3) выразим tgα , выполним необходимые преобразования и получим:

    Что и требовалось доказать.


    Если k =0 , то прямая параллельна оси Ох , и её уравнение имеет вид у= b .

    Пример . Прямая задана общим уравнением 4х+2у-2=0 . Составить для этой прямой уравнение с угловым коэффициентом.

    Решение . Выполним преобразования, аналогичные описанным выше, получим:

    где k=-2, b=1 .

    Уравнение прямой, проходящей через заданную точку, с данным угловым коэффициентом.

    Пусть задана точка М 0 (х 0 ,у 0) прямой и её угловой коэффициент k . Запишем уравнение прямой в виде (4), где b —пока неизвестное число. Так как точка М 0 принадлежит заданной прямой, то её координаты удовлетворяют уравнению (4): . Подставляя выражение для b в (4), получаем искомое уравнение прямой:

    Пример. Записать уравнение прямой, проходящей через точку М(1,2) и под наклоном к оси Ох под углом 45 0 .

    Решение . k = tgα = tg 45 0 =1 . Отсюда: .

    Уравнение прямой, проходящей через две данные точки.

    Пусть даны две точки М 1 (х 1 ,у 1) и М 2 (х 2 ,у 2) . Запишем уравнение прямой в виде (5), где k пока неизвестный коэффициент:

    Так как точка М 2 принадлежит заданной прямой, то её координаты удовлетворяют уравнению (5): . Выражая отсюда и подставив его в уравнение (5) получим искомое уравнение:

    Если это уравнение можно переписать в виде, более удобном для запоминания:

    Пример. Записать уравнение прямой, проходящей через точки М 1 (1,2) и М 2 (-2,3)

    Решение . . Используя свойство пропорции, и выполнив необходимые преобразования, получим общее уравнение прямой:

    Угол между двумя прямыми

    Рассмотрим две прямые l 1 и l 2 :

    l 1 : , , и

    l 2 : , ,

    φ- угол между ними (). Из рис.4 видно: .


    Отсюда , или

    l 2 параллельны, то φ=0 и tgφ =0 . из формулы (7) следует, что , откуда k 2 = k 1 . Таким образом, условием параллельности двух прямых является равенство их угловых коэффициентов.

    Если прямые l 1 и l 2 перпендикулярны, то φ=π/2 , α 2 = π/2+ α 1 . . Таким образом, условие перпендикулярности двух прямых состоит в том, что их угловые коэффициенты обратны по величине и противоположны по знаку.


    Линейность уравнения прямой и обратное утверждение.


    Направляющий и нормальный векторы.

    Нормальный вектор прямой - это любой ненулевой вектор, лежащий на любой прямой перпендикулярной данной.

    Направляющий вектор прямой - это любой ненулевой вектор, лежащий на данной прямой или на параллельной ей прямой.

    Для того, чтобы использовать метод координат, надо хорошо знать формулы. Их три:

    На первый взгляд, выглядит угрожающе, но достаточно немного практики - и все будет работать великолепно.

    Задача. Найти косинус угла между векторами a = (4; 3; 0) и b = (0; 12; 5).

    Решение. Поскольку координаты векторов нам даны, подставляем их в первую формулу:

    Задача. Составить уравнение плоскости, проходящей через точки M = (2; 0; 1), N = (0; 1; 1) и K = (2; 1; 0), если известно, что она не проходит через начало координат.

    Решение. Общее уравнение плоскости: Ax + By + Cz + D = 0, но, поскольку искомая плоскость не проходит через начало координат - точку (0; 0; 0) - то положим D = 1. Поскольку эта плоскость проходит через точки M, N и K, то координаты этих точек должны обращать уравнение в верное числовое равенство.

    Подставим вместо x, y и z координаты точки M = (2; 0; 1). Имеем:
    A · 2 + B · 0 + C · 1 + 1 = 0 ⇒ 2A + C + 1 = 0;

    Аналогично, для точек N = (0; 1; 1) и K = (2; 1; 0) получим уравнения:
    A · 0 + B · 1 + C · 1 + 1 = 0 ⇒ B + C + 1 = 0;
    A · 2 + B · 1 + C · 0 + 1 = 0 ⇒ 2A + B + 1 = 0;

    Итак, у нас есть три уравнения и три неизвестных. Составим и решим систему уравнений:

    Получили, что уравнение плоскости имеет вид: − 0,25x − 0,5y − 0,5z + 1 = 0.

    Задача. Плоскость задана уравнением 7x − 2y + 4z + 1 = 0. Найти координаты вектора, перпендикулярного данной плоскости.

    Решение. Используя третью формулу, получаем n = (7; − 2; 4) - вот и все!

    Вычисление координат векторов

    А что, если в задаче нет векторов - есть только точки, лежащие на прямых, и требуется вычислить угол между этими прямыми? Все просто: зная координаты точек - начала и конца вектора - можно вычислить координаты самого вектора.

    Чтобы найти координаты вектора, надо из координат его конца вычесть координаты начала.

    Эта теорема одинаково работает и на плоскости, и в пространстве. Выражение «вычесть координаты» означает, что из координаты x одной точки вычитается координата x другой, затем то же самое надо сделать с координатами y и z. Вот несколько примеров:

    Задача. В пространстве расположены три точки, заданные своими координатами: A = (1; 6; 3), B = (3; − 1; 7) и C = (− 4; 3; − 2). Найти координаты векторов AB, AC и BC.

    Рассмотрим вектор AB: его начало находится в точке A, а конец - в точке B. Следовательно, чтобы найти его координаты, надо из координат точки B вычесть координаты точки A:
    AB = (3 − 1; − 1 − 6; 7 − 3) = (2; − 7; 4).

    Аналогично, начало вектора AC - все та же точка A, зато конец - точка C. Поэтому имеем:
    AC = (− 4 − 1; 3 − 6; − 2 − 3) = (− 5; − 3; − 5).

    Наконец, чтобы найти координаты вектора BC, надо из координат точки C вычесть координаты точки B:
    BC = (− 4 − 3; 3 − (− 1); − 2 − 7) = (− 7; 4; − 9).

    Ответ: AB = (2; − 7; 4); AC = (− 5; − 3; − 5); BC = (− 7; 4; − 9)

    Обратите внимание на вычисление координат последнего вектора BC: очень многие ошибаются, когда работают с отрицательными числами. Это касается переменной y: у точки B координата y = − 1, а у точки C y = 3. Получаем именно 3 − (− 1) = 4, а не 3 − 1, как многие считают. Не допускайте таких глупых ошибок!

    Вычисление направляющих векторов для прямых

    Если вы внимательно прочитаете задачу C2, то с удивлением обнаружите, что никаких векторов там нет. Там только прямые да плоскости.

    Для начала разберемся с прямыми. Здесь все просто: на любой прямой найдутся хотя бы две различные точки и, наоборот, любые две различные точки задают единственную прямую...

    Кто-нибудь понял, что написано в предыдущем абзаце? Я и сам не понял, поэтому объясню проще: в задаче C2 прямые всегда задаются парой точек. Если ввести систему координат и рассмотреть вектор с началом и концом в этих точках, получим так называемый направляющий вектор для прямой:

    Зачем нужен этот вектор? Дело в том, что угол между двумя прямыми - это угол между их направляющими векторами. Таким образом, мы переходим от непонятных прямых к конкретным векторам, координаты которых легко считаются. Насколько легко? Взгляните на примеры:

    Задача. В кубе ABCDA 1 B 1 C 1 D 1 проведены прямые AC и BD 1 . Найдите координаты направляющих векторов этих прямых.

    Поскольку длина ребер куба в условии не указана, положим AB = 1. Введем систему координат с началом в точке A и осями x, y, z, направленными вдоль прямых AB, AD и AA 1 соответственно. Единичный отрезок равен AB = 1.

    Теперь найдем координаты направляющего вектора для прямой AC. Нам потребуются две точки: A = (0; 0; 0) и C = (1; 1; 0). Отсюда получаем координаты вектора AC = (1 − 0; 1 − 0; 0 − 0) = (1; 1; 0) - это и есть направляющий вектор.

    Теперь разберемся с прямой BD 1 . На ней также есть две точки: B = (1; 0; 0) и D 1 = (0; 1; 1). Получаем направляющий вектор BD 1 = (0 − 1; 1 − 0; 1 − 0) = (− 1; 1; 1).

    Ответ: AC = (1; 1; 0); BD 1 = (− 1; 1; 1)

    Задача. В правильной треугольной призме ABCA 1 B 1 C 1 , все ребра которой равны 1, проведены прямые AB 1 и AC 1 . Найдите координаты направляющих векторов этих прямых.

    Введем систему координат: начало в точке A, ось x совпадает с AB, ось z совпадает с AA 1 , ось y образует с осью x плоскость OXY, которая совпадает с плоскостью ABC.

    Для начала разберемся с прямой AB 1 . Тут все просто: у нас есть точки A = (0; 0; 0) и B 1 = (1; 0; 1). Получаем направляющий вектор AB 1 = (1 − 0; 0 − 0; 1 − 0) = (1; 0; 1).

    Теперь найдем направляющий вектор для AC 1 . Все то же самое - единственное отличие в том, что у точки C 1 иррациональные координаты. Итак, A = (0; 0; 0), поэтому имеем:

    Ответ: AB 1 = (1; 0; 1);

    Небольшое, но очень важное замечание насчет последнего примера. Если начало вектора совпадает с началом координат, вычисления резко упрощаются: координаты вектора просто равны координатам конца. К сожалению, это верно лишь для векторов. Например, при работе с плоскостями присутствие на них начала координат только усложняет выкладки.

    Вычисление нормальных векторов для плоскостей

    Нормальные векторы - это не те векторы, у которых все в порядке, или которые чувствуют себя хорошо. По определению, нормальный вектор (нормаль) к плоскости - это вектор, перпендикулярный данной плоскости.

    Другими словами, нормаль - это вектор, перпендикулярный любому вектору в данной плоскости. Наверняка вы встречали такое определение - правда, вместо векторов речь шла о прямых. Однако чуть выше было показано, что в задаче C2 можно оперировать любым удобным объектом - хоть прямой, хоть вектором.

    Еще раз напомню, что всякая плоскость задается в пространстве уравнением Ax + By + Cz + D = 0, где A, B, C и D - некоторые коэффициенты. Не умаляя общности решения, можно полагать D = 1, если плоскость не проходит через начало координат, или D = 0, если все-таки проходит. В любом случае, координаты нормального вектора к этой плоскости равны n = (A; B; C).

    Итак, плоскость тоже можно успешно заменить вектором - той самой нормалью. Всякая плоскость задается в пространстве тремя точками. Как найти уравнение плоскости (а следовательно - и нормали), мы уже обсуждали в самом начале статьи. Однако этот процесс у многих вызывает проблемы, поэтому приведу еще парочку примеров:

    Задача. В кубе ABCDA 1 B 1 C 1 D 1 проведено сечение A 1 BC 1 . Найти нормальный вектор для плоскости этого сечения, если начало координат находится в точке A, а оси x, y и z совпадают с ребрами AB, AD и AA 1 соответственно.

    Поскольку плоскость не проходит через начало координат, ее уравнение выглядит так: Ax + By + Cz + 1 = 0, т.е. коэффициент D = 1. Поскольку эта плоскость проходит через точки A 1 , B и C 1 , то координаты этих точек обращают уравнение плоскости в верное числовое равенство.


    A · 0 + B · 0 + C · 1 + 1 = 0 ⇒ C + 1 = 0 ⇒ C = − 1;

    Аналогично, для точек B = (1; 0; 0) и C 1 = (1; 1; 1) получим уравнения:
    A · 1 + B · 0 + C · 0 + 1 = 0 ⇒ A + 1 = 0 ⇒ A = − 1;
    A · 1 + B · 1 + C · 1 + 1 = 0 ⇒ A + B + C + 1 = 0;

    Но коэффициенты A = − 1 и C = − 1 нам уже известны, поэтому остается найти коэффициент B:
    B = − 1 − A − C = − 1 + 1 + 1 = 1.

    Получаем уравнение плоскости: − A + B − C + 1 = 0, Следовательно, координаты нормального вектора равны n = (− 1; 1; − 1).

    Задача. В кубе ABCDA 1 B 1 C 1 D 1 проведено сечение AA 1 C 1 C. Найти нормальный вектор для плоскости этого сечения, если начало координат находится в точке A, а оси x, y и z совпадают с ребрами AB, AD и AA 1 соответственно.

    В данном случае плоскость проходит через начало координат, поэтому коэффициент D = 0, а уравнение плоскости выглядит так: Ax + By + Cz = 0. Поскольку плоскость проходит через точки A 1 и C, координаты этих точек обращают уравнение плоскости в верное числовое равенство.

    Подставим вместо x, y и z координаты точки A 1 = (0; 0; 1). Имеем:
    A · 0 + B · 0 + C · 1 = 0 ⇒ C = 0;

    Аналогично, для точки C = (1; 1; 0) получим уравнение:
    A · 1 + B · 1 + C · 0 = 0 ⇒ A + B = 0 ⇒ A = − B;

    Положим B = 1. Тогда A = − B = − 1, и уравнение всей плоскости имеет вид: − A + B = 0, Следовательно, координаты нормального вектора равны n = (− 1; 1; 0).

    Вообще говоря, в приведенных задачах надо составлять систему уравнений и решать ее. Получится три уравнения и три переменных, но во втором случае одна из них будет свободной, т.е. принимать произвольные значения. Именно поэтому мы вправе положить B = 1 - без ущерба для общности решения и правильности ответа.

    Очень часто в задаче C2 требуется работать с точками, которые делят отрезок пополам. Координаты таких точек легко считаются, если известны координаты концов отрезка.

    Итак, пусть отрезок задан своими концами - точками A = (x a ; y a ; z a) и B = (x b ; y b ; z b). Тогда координаты середины отрезка - обозначим ее точкой H - можно найти по формуле:

    Другими словами, координаты середины отрезка - это среднее арифметическое координат его концов.

    Задача. Единичный куб ABCDA 1 B 1 C 1 D 1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA 1 соответственно, а начало координат совпадает с точкой A. Точка K - середина ребра A 1 B 1 . Найдите координаты этой точки.

    Поскольку точка K - середина отрезка A 1 B 1 , ее координаты равных среднему арифметическому координат концов. Запишем координаты концов: A 1 = (0; 0; 1) и B 1 = (1; 0; 1). Теперь найдем координаты точки K:

    Задача. Единичный куб ABCDA 1 B 1 C 1 D 1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA 1 соответственно, а начало координат совпадает с точкой A. Найдите координаты точки L, в которой пересекаются диагонали квадрата A 1 B 1 C 1 D 1 .

    Из курса планиметрии известно, что точка пересечения диагоналей квадрата равноудалена от всех его вершин. В частности, A 1 L = C 1 L, т.е. точка L - это середина отрезка A 1 C 1 . Но A 1 = (0; 0; 1), C 1 = (1; 1; 1), поэтому имеем:

    Ответ : L = (0,5; 0,5; 1)