Свойства жидкостей. Поверхностное натяжение

Силы притяжения между молекулами на поверхности жидкости удерживают их от движения за ее пределы.

Молекулы жидкости испытывают силы взаимного притяжения — на самом деле, именно благодаря этому жидкость моментально не улетучивается. На молекулы внутри жидкости силы притяжения других молекул действуют со всех сторон и поэтому взаимно уравновешивают друг друга. Молекулы же на поверхности жидкости не имеют соседей снаружи, и результирующая сила притяжения направлена внутрь жидкости. В итоге вся поверхность воды стремится стянуться под воздействием этих сил. По совокупности этот эффект приводит к формированию так называемой силы поверхностного натяжения, которая действует вдоль поверхности жидкости и приводит к образованию на ней подобия невидимой, тонкой и упругой пленки.

Одним из следствий эффекта поверхностного натяжения является то, что для увеличения площади поверхности жидкости — ее растяжения — нужно проделать механическую работу по преодолению сил поверхностного натяжения. Следовательно, если жидкость оставить в покое, она стремится принять форму, при которой площадь ее поверхности окажется минимальной. Такой формой, естественно, является сфера — вот почему дождевые капли в полете принимают почти сферическую форму (я говорю «почти», потому что в полете капли слегка вытягиваются из-за сопротивления воздуха). По этой же причине капли воды на кузове покрытого свежим воском автомобиля собираются в бусинки.

Силы поверхностного натяжения используются в промышленности — в частности, при отливке сферических форм, например ружейной дроби. Каплям расплавленного металла просто дают застывать на лету при падении с достаточной для этого высоты, и они сами застывают в форме шариков, прежде чем упадут в приемный контейнер.

Можно привести много примеров сил поверхностного натяжения в действии из нашей будничной жизни. Под воздействием ветра на поверхности океанов, морей и озер образуется рябь, и эта рябь представляет собой волны, в которых действующая вверх сила внутреннего давления воды уравновешивается действующей вниз силой поверхностного натяжения. Две эти силы чередуются, и на воде образуется рябь, подобно тому как за счет попеременного растяжения и сжатия образуется волна в струне музыкального инструмента.

Будет жидкость собираться в «бусинки» или ровным слоем растекаться по твердой поверхности, зависит от соотношения сил межмолекулярного взаимодействия в жидкости, вызывающих поверхностное натяжение, и сил притяжения между молекулами жидкости и твердой поверхностью. В жидкой воде, например, силы поверхностного натяжения обусловлены водородными связями между молекулами (см. Химические связи). Поверхность стекла водой смачивается, поскольку в стекле содержится достаточно много атомов кислорода, и вода легко образует гидрогенные связи не только с другими молекулами воды, но и с атомами кислорода. Если же смазать поверхность стекла жиром, водородные связи с поверхностью образовываться не будут, и вода соберется в капельки под воздействием внутренних водородных связей, обусловливающих поверхностное натяжение.

В химической промышленности в воду часто добавляют специальные реагенты-смачиватели — сурфактанты , — не дающие воде собираться в капли на какой-либо поверхности. Их добавляют, например, в жидкие моющие средства для посудомоечных машин. Попадая в поверхностный слой воды, молекулы таких реагентов заметно ослабляют силы поверхностного натяжения, вода не собирается в капли и не оставляет на поверхности грязных крапин после высыхания (см.

На этом уроке пойдет речь о жидкостях и их свойствах. С точки зрения современной физики, жидкости являются наиболее сложным предметом исследований, потому что по сравнению с газами уже нельзя говорить о пренебрежимо малой энергии взаимодействия между молекулами, а по сравнению с твердыми телами нельзя говорить об упорядоченном расположении молекул жидкости (в жидкости отсутствует дальний порядок). Это приводит к тому, что жидкости обладают рядом интереснейших свойств и их проявлений. Об одном таком свойстве и пойдет речь на этом уроке.

Для начала, обсудим особые свойства, которыми обладают молекулы приповерхностного слоя жидкости по сравнению с молекулами, находящимися в объеме.

Рис. 1. Отличие молекул приповерхностного слоя от молекул, находящихся в объеме жидкости

Рассмотрим две молекулы А и Б. Молекула А находится внутри жидкости, молекула Б - на ее поверхности (Рис. 1). Молекула А окружена другими молекулами жидкости равномерно, поэтому силы, действующие на молекулу А со стороны молекул, попадающих в сферу межмолекулярного взаимодействия, скомпенсированы, или их равнодействующая равна нулю.

Что же происходит с молекулой Б, которая находится у поверхности жидкости? Напомним, что концентрация молекул газа, который находится над жидкостью, значительно меньше, чем концентрация молекул жидкости. Молекула Б с одной стороны окружена молекулами жидкости, а с другой стороны - сильно разреженными молекулами газа. Поскольку со стороны жидкости на нее действует гораздо больше молекул, то равнодействующая всех межмолекулярных сил будет направлена внутрь жидкости.

Таким образом, для того чтобы молекула из глубины жидкости попала в поверхностный слой, нужно совершить работу против не скомпенсированных межмолекулярных сил.

Вспомним, что работа - это изменение потенциальной энергии, взятое со знаком минус.

Значит, молекулы приповерхностного слоя, по сравнению с молекулами внутри жидкости, обладают избыточной потенциальной энергией.

Эта избыточная энергия является составляющей внутренней энергии жидкости и называется поверхностной энергией . Обозначается она, как , и измеряется, как и любая другая энергия, в джоулях.

Очевидно, что чем больше площадь поверхности жидкости, тем больше таких молекул, которые обладают избыточной потенциальной энергией, а значит тем больше поверхностная энергия. Этот факт можно записать в виде следующего соотношения:

,

где - площадь поверхности, а - коэффициент пропорциональности, который мы назовем коэффициентом поверхностного натяжения , этот коэффициент характеризует ту, или иную жидкость. Запишем строгое определение этой величины.

Поверхностное натяжение жидкости (коэффициент поверхностного натяжения жидкости) - это физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости

Измеряется коэффициент поверхностного натяжения в ньютонах, деленных на метр.

Обсудим, от чего зависит коэффициент поверхностного натяжения жидкости. Для начала, вспомним, что коэффициент поверхностного натяжения характеризует удельную энергию взаимодействия молекул, а значит факторы, изменяющие эту энергию, изменят и коэффициент поверхностного натяжения жидкости.

Итак, коэффициент поверхностного натяжения зависит от:

1. Природы жидкости (у «летучих» жидкостей, таких как эфир, спирт и бензин, поверхностное натяжение меньше, чем у «нелетучих» - воды, ртути и жидких металлов).

2. Температуры (чем выше температура, тем меньше поверхностное натяжение).

3. Наличие поверхностно активных веществ, уменьшающих поверхностное натяжение (ПАВ), например мыла или стирального порошка.

4. Свойства газа, граничащего с жидкостью.

Отметим, что коэффициент поверхностного натяжения не зависит от площади поверхности, так как для одной отдельно взятой приповерхностной молекулы абсолютно неважно, сколько таких же молекул вокруг. Обратите внимание на таблицу, в которой приведены коэффициенты поверхностного натяжения различных веществ, при температуре :

Таблица 1. Коэффициенты поверхностного натяжения жидкостей на границе с воздухом, при

Итак, молекулы приповерхностного слоя обладают избыточной потенциальной энергией по сравнению с молекулами в объеме жидкости. В курсе механики было показано, что любая система стремится к минимуму потенциальной энергии. Например, тело, брошенное с некоторой высоты, будет стремиться упасть вниз. Кроме того, вы чувствуете себя намного комфортнее лёжа, поскольку в этом случае максимально низко расположен центр масс вашего тела. К чему приводит стремление уменьшить свою потенциальную энергию в случае жидкости? Поскольку поверхностная энергия зависит от площади поверхности, значит, любой жидкости энергетически невыгодно иметь большую площадь поверхности. Иными словами, в свободном состоянии жидкость будет стремиться сделать свою поверхность минимальной.

В этом легко убедиться, экспериментируя с мыльной пленкой. Если окунуть в мыльный раствор некий проволочный каркас, то на нем образуется мыльная пленка, при чем пленка приобретет такую форму, чтобы площадь ее поверхности была минимальной (Рис. 2).

Рис. 2. Фигуры из мыльного раствора

Убедиться в существовании сил поверхностного натяжения можно при помощи простого эксперимента. Если к проволочному кольцу в двух местах привязана нить, причем так, чтобы длина нити была несколько больше длины хорды, соединяющей точки крепления нити, и обмакнуть проволочное кольцо в мыльный раствор (Рис. 3а), мыльная пленка затянет всю поверхность кольца и нить будет лежать на мыльной пленке. Если теперь порвать пленку с одной стороны нити, мыльная пленка, оставшаяся с другой стороны нити, сократится и натянет нить (Рис. 3б).

Рис. 3. Эксперимент по обнаружению сил поверхностного натяжения

Почему же так произошло? Дело в том, что оставшийся сверху мыльный раствор, то есть жидкость, стремится сократить площадь своей поверхности. Таким образом, нить вытягивается вверх.

Итак, в существовании силы поверхностного натяжения мы убедились. Теперь научимся ее рассчитывать. Для этого проведем мысленный эксперимент. Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна (Рис. 4). Будем растягивать мыльную пленку, действуя на подвижную сторону рамки силой . Таким образом, на перекладину действуют три силы - внешняя сила и две силы поверхностного натяжения , действующие вдоль каждой поверхности пленки. Воспользовавшись вторым законом Ньютона, можем записать, что

Рис. 4. Вычисление силы поверхностного натяжения

Если под действием внешней силы перекладина переместится на расстояние , то эта внешняя сила совершит работу

Естественно, что за счет совершения этой работы площадь поверхности пленки увеличится, а значит, увеличится и поверхностная энергия, которую мы можем определить через коэффициент поверхностного натяжения:

Изменение площади, в свою очередь можно определить следующим образом:

где - длина подвижной части проволочной рамки. Учитывая это, можно записать, что работа внешней силы равна

Приравнивая правые части в (*) и (**), получим выражение для силы поверхностного натяжения:

Таким образом, коэффициент поверхностного натяжения численно равен силе поверхностного натяжения, которая действует на единицу длины линии, ограничивающей поверхность

Итак, мы еще раз убедились в том, что жидкость стремится принять такую форму, чтобы площадь ее поверхности была минимальной. Можно показать, что при заданном объеме площадь поверхности будет минимальной у шара. Таким образом, если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать сферическую форму. Так, например, будет вести себя вода в невесомости (Рис. 5) или мыльные пузыри (Рис. 6).

Рис. 5. Вода в невесомости

Рис. 6. Мыльные пузыри

Наличием сил поверхностного натяжения также можно объяснить то, почему металлическая иголка «лежит» на поверхности воды (Рис. 7). Иголка, которую аккуратно положили на поверхность, деформирует ее, увеличивая тем самым площадь этой поверхности. Таким образом, возникает сила поверхностного натяжения, которая стремится уменьшить подобное изменение площади. Равнодействующая сил поверхностного натяжения будет направлена вверх, и она скомпенсирует силу тяжести.


Рис. 7. Иголка на поверхности воды

Таким же образом можно объяснить принцип действия пипетки. Капелька, на которую действует сила тяжести, вытягивается вниз, тем самым увеличивая площадь своей поверхности. Естественно, возникают силы поверхностного натяжения, равнодействующая которых противоположна направлению силы тяжести, и которые не дают капельке растягиваться (Рис. 8). Когда вы нажимаете на резиновый колпачок пипетки, вы тем самым создаете дополнительное давление, которое помогает силе тяжести, и в результате, капля падает вниз.

Рис. 8. Принцип работы пипетки

Приведем еще один пример из повседневной жизни. Если опустить кисточку для рисования в стакан с водой, то ее волоски распушатся. Если теперь вынуть эту кисточку из воды, то вы заметите, что все волоски прилипли друг к другу. Это связано с тем, что площадь поверхности воды, налипшей на кисточку, в таком случае будет минимальной.

И еще один пример. Если вы захотите построить замок из сухого песка, это у вас вряд ли получится, поскольку песок будет рассыпаться под действием силы тяжести. Однако если вы намочите песок, то он будет сохранять свою форму благодаря силам поверхностного натяжения воды между песчинками.

Наконец, отметим, что теория поверхностного натяжения помогает найти красивые и простые аналогии при решении более сложных физических задач. Например, когда нужно построить лёгкую и в то же время прочную конструкцию, на помощь приходит физика того, что происходит в мыльных пузырях. А построить первую адекватную модель атомного ядра удалось, уподобив это атомное ядро капле заряженной жидкости.

Список литературы

  1. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. «Физика 10». - М.: Просвещение, 2008.
  2. Я. Е. Гегузин «Пузыри», Библиотека Квант. - М.: Наука, 1985.
  3. Б. М. Яворский, А. А. Пинский «Основы физики» т. 1.
  4. Г. С. Ландсберг «Элементарный учебник физики» т. 1.
  1. Nkj.ru ().
  2. Youtube.com ().
  3. Youtube.com ().
  4. Youtube.com ().

Домашнее задание

  1. Решив задачи к данному уроку, вы сможете подготовиться к вопросам 7,8,9 ГИА и вопросам А8, А9, A10 ЕГЭ.
  2. Гельфгат И.М., Ненашев И.Ю. «Физика. Сборник задач 10 класс» 5.34, 5.43, 5.44, 5.47 ()
  3. Опираясь на задачу 5.47, определите коэффициент поверхностного натяжения воды и мыльного раствора.

Список вопросов-ответов

Вопрос: Почему поверхностное натяжение меняется с изменением температуры?

Ответ: При увеличении температуры, молекулы жидкости начинают двигаться быстрее, и следовательно, молекулы легче преодолевают потенциальные силы притяжения. Что и приводит к уменьшению сил поверхностного натяжения, являющихся потенциальными силами, которыми связываются молекулы приповерхностного слоя жидкости.

Вопрос: Зависит ли коэффициент поверхностного натяжения от плотности жидкости?

Ответ: Да, зависит, поскольку от плотности жидкости зависит энергия молекул приповерхностного слоя жидкости.

Вопрос: Какие существуют способы определения коэффициента поверхностного натяжения жидкости?

Ответ: В школьном курсе изучаютдва способа определениякоэффициента поверхностного натяжения жидкости. Первый - это метод отрыва проволочки, его принцип описан в задаче 5.44 из домашнего задания, второй - метод счета капель, описанный в задаче 5.47.

Вопрос: Почему через некоторое время мыльные пузыри разрушаются?

Ответ: Дело в том, что через некоторое время, под действием силы тяжести пузырь становится толще внизу, чем вверху, и затем под влиянием испарения разрушается в какой-либо точке. Это приводит к тому, что весь пузырь, подобно воздушному шарику, схлопывается под действием не скомпенсированных сил поверхностного натяжения.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

В окружающем нас мире наряду с тяготением, упругостью и трением действует еще одна сила, на которую мы обычно не обращаем внимание. Эта сила действует вдоль касательной к поверхностям всех жидкостей. Силу, которая действует вдоль поверхности жидкости перпендикулярно линии, ограничивающей эту поверхность, стремится сократить её до минимума, называют силой поверхностного натяжения . Она сравнительно мала, ее действие никогда не вызывает мощных эффектов. Тем не менее, мы не можем налить воду в стакан, вообще ничего не можем проделать с какой-либо жидкостью без того, чтобы не привести в действие силы поверхностного натяжения. К эффектам, называемым поверхностным натяжением, мы настолько привыкли, что не замечаем их. Удивительно разнообразны проявления поверхностного натяжения жидкости в природе и технике. В природе и в нашей жизни они играют немаловажную роль. Без них мы не могли бы писать гелиевыми ручками, картриджив принтерах сразу же ставили бы большую кляксу, опорожнив весь свой резервуар. Нельзя было бы намылить руки - пена не образовалась бы. Слабый дождик промочил бы нас насквозь, а радугу нельзя было бы видеть ни при какой погоде. Поверхностное натяжение собирает воду в капли и благодаря поверхностному натяжению можно выдуть мыльный пузырь. Используя правило «Вовремя удивляться» бельгийского профессора Плато для исследователей, рассмотрим в работе необычные опыты.

Цель работы: экспериментально проверить проявления поверхностного натяжения жидкости, определить коэффициент поверхностного натяжения жидкостей методом отрыва капель

    Изучить учебную, научно-популярную литературу, использовать материалы в сети «Интернет» по теме «Поверхностное натяжение»;

    проделать опыты, доказывающие, что собственная форма жидкости - шар;

    провести эксперименты с уменьшением и увеличением поверхностного натяжения;

    сконструировать и собрать экспериментальную установку, с помощью которой определить коэффициент поверхностного натяжения некоторых жидкостей методом отрыва капель.

    обработать полученные данные и сделать вывод.

Объект исследования: жидкости.

Основная часть. Поверхностное натяжение

Рис 1. Г. Галилей

Ногочисленные наблюдения и опыты показывают, что жидкость может принимать такую форму, при которой ее свободная поверхность имеет наименьшую площадь. В своем стремлении сократиться поверхностная пленка придавала бы жидкости сферическую форму, если бы не притяжение к Земле. Чем меньше капля, тем большую роль играют силы поверхностного натяжения. Поэтому маленькие капельки росы на листьях деревьев, на траве близки по форме к шару, при свободном падении дождевые капли почти строго шарообразны. Стремление жидкости сокращаться до возможного минимума, можно наблюдать на многих явлениях, которые кажутся удивительными. Еще Галилей задумывался над вопросом: почему капли росы, которые он видел по утрам на листьях капусты, принимают шарообразную форму? Утверждение, что жидкость не имеет своей формы, оказывается не совсем точным. Собственная форма жидкости - шар, как наиболее ёмкая форма. Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, также как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах, и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. 1

Рис 2. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества: 1 - вода; 2 - лед

А как можно объяснить самопроизвольное сокращение поверхности жидкости? Молекулы на поверхности и в глубине жидкости находятся в разных условиях. На каждую молекулу внутри жидкости действуют силы притяжения со стороны соседних молекул, окружающих ее со всех сторон. Результирующая этих сил равна нулю. Над поверхностью жидкости находится пар, плотность которого во много раз меньше плотности жидкости, и взаимодействием молекул пара с молекулами жидкости можно пренебречь. Молекулы, которые находятся на поверхности жидкости, притягиваются только молекулами, находящимися внутри жидкости. Под действием этих сил молекулы поверхностного слоя втягиваются внутрь, число молекул на поверхности уменьшается, площадь поверхности сокращается. Но не все молекулы могут с поверхности уйти внутрь жидкости, этому препятствуют силы отталкивания, возникающие при уменьшении расстояний между молекулами. При определенных расстояниях между молекулами, втягиваемыми внутрь, и молекулами, находящимися под поверхностью, силы взаимодействия становятся равными нулю, процесс сокращения поверхности прекращается. На поверхности остается такое число молекул, при котором ее площадь оказывается минимальной для данного объема жидкости. Так как жидкость текуча, она принимает такую форму, при которой число молекул на поверхности минимально, а минимальную поверхность при данном объеме имеет шар, то есть капля жидкости принимает форму, близкую шаровой.Проще всего уловить характер сил поверхностного натяжения, наблюдая образование капли. Всмотритесь внимательно, как постепенно растет капля, образуется сужение - шейка, - и капля отрывается. Не нужно много фантазии, чтобы представить себе, что вода как бы заключена в эластичный мешочек, и этот мешочек разрывается, когда вес превышает его прочность. В действительности, конечно, ничего кроме воды, в капле нет, но сам поверхностный слой воды ведёт себя, как растянутая эластичная пленка. Такое же впечатление производит пленка мыльного пузыря.

Опыт №1

Тремление жидкости к минимуму потенциальной энергии можно наблюдать с помощью мыльных пузырей. Мыльная пленка представляет собой двойной поверхностный слой. Если выдуть мыльный пузырь, а потом прекратить надувание, то он станет уменьшаться в объёме, выжимая из себя струю воздуха.

Поверхностное натяжение - явление молекулярного давления на жидкость, вызываемое притяжением молекул поверхностного слоя к молекулам внутри жидкости 5

Опыт Плато (1849г.)

Рис. 4. Ж.Плато

Оводом, побудившим бельгийского профессора к опытам, был случай. Нечаянно он налил в смесь спирта и воды небольшое количество масла, и оно приняло форму шара. Размышляя над этим фактом, Плато наметил ряд опытов, которые впоследствии блестяще были выполненными его друзьями и учениками. В своем дневнике он написал для исследователей правило: «Вовремя удивляться». Я решила исследовать опыт Плато, но в другом варианте: использовать в опыте подсолнечное масло и подкрашенную марганцовую воду.

Опыт, доказывающий, что однородная жидкость принимает форму с минимальной свободной поверхностью

Вариант опыта Плато №2

1) В мензурку налили подсолнечное масло.

2) Глазной пипеткой капнули в подсолнечное масло каплю подкрашенной марганцовой воды диаметром приблизительно 5мм.

) Наблюдали шарики воды разного размера, медленно падающие на дно и принимающие овальную приплюснутую форму (Фото 2).

5) Наблюдали, как капля принимает правильную форму шара (Фото 2).

Вывод : Жидкость, притягивая молекулы поверхностного слоя, сжимает саму себя. Овальная приплюснутая форма объясняется тем, что вес капли, которая не смешивается с маслом, больше выталкивающей силы. Правильная форма шара объясняется тем, что капля плавает внутри масла: вес капли уравновешивается выталкивающей силой.

При свободном падении, в состоянии невесомости капли дождя практически имеют форму шара. В космическом корабле шарообразную форму принимает и достаточно большая масса жидкости.

Коэффициент поверхностного натяжения

В отсутствии внешней силы вдоль поверхности жидкости действует сила поверхностного натяжения, которая сокращает до минимума площадь поверхности пленки. Сила поверхностного натяжения - сила, направленная по касательной к поверхности жидкости, перпендикулярно участку контура, ограничивающего поверхность, в сторону ее сокращения.

Ơ - коэффициент поверхностного натяжения - это отношение модуля F силы поверхностного натяжения, действующей на границу поверхностного слоя ℓ, к этой длине есть величина постоянная, не зависящая от длины ℓ. Коэффициент поверхностного натяжения зависит от природы граничащих сред и от температуры. Его выражают в ньютонах на метр (Н / м).

Опыты с уменьшением и увеличением

Фото 3

оверхностного натяжения

Опыт №3

    Прикоснулись к центру поверхности воды кусочком мыла.

    Кусочки пенопласта начинают двигаться от центра к краям сосуда (Фото 3).

    Капали в центр сосуда бензином, спиртом, моющим средством «Fairy».

Вывод: Поверхностное натяжение данных веществ меньше, чем у воды.

Эти вещества используются для удаления грязи, жирных пятен, сажи, т.е. не растворимых в воде веществ.Из-за достаточно высокого поверхностного натяжения вода сама по себе не обладает очень хорошим чистящим действием. Например, вступая в контакт с пятном, молекулы воды притягиваются друг к другу больше, чем к частицам нерастворимой грязи.Мыло и синтетические моющие средства (СМС) содержат вещества, уменьшающие поверхностное натяжение воды. Первое мыло, самое простое моющее средство, было получено на Ближнем Востоке более 5000 лет назад. Поначалу оно использовалось, главным образом, для стирки и обработки язв и ран. И только в 1 веке н.э. человек стал мыться с мылом.

В начале 1-го века мыло появилось на свет.

От грязи спасло человека и стал он чистым с юных лет.

Я говорю вам про мыло, что вскоре породило: шампунь, гель, порошок.

Стал чистым мир, как хорошо!

Рис 5. Ф. Гюнтер

Моющими средствами называются натуральные и синтетические вещества с очищающим действием, в особенности мыло и стиральные порошки, применяемые в быту, промышленности и сфере обслуживания. Мыло получают в результате химического взаимодействия жира и щелочи. Скорее всего, оно было открыто по чистой случайности, когда над костром жарили мясо, и жир стекал на золу, обладающую щелочными свойствами. Производство мыла имеет давнюю историю, а вот первое синтетическое моющее средство (СМС) появилось в 1916г., его изобрел немецкий химик Фриц Гюнтер для промышленных целей. Бытовые СМС, более или менее безвредные для рук, стали выпускаться 1933г. С тех пор разработан целый ряд синтетических моющих средств (СМС) узкого назначения, а их производство стало важной отраслью химической промышленности.

Именно из-за поверхностного натяжения вода сама по себе не обладает достаточным чистящим действием. Вступая в контакт с пятном, молекулы воды притягиваются друг к другу, вместо того чтобы захватывать частицы грязи, другими словами они не смачивают грязь.

Мыло и синтетические моющие средства содержат вещества, повышающие смачивающие свойства воды за счет уменьшения силы поверхностного натяжения. Эти вещества называются поверхностно-активными (ПАВ), поскольку действуют на поверхности жидкости.

Сейчас производство СМС стало важной отраслью химической промышленности. Эти вещества называют поверхностно-активным веществом (ПАВ), поскольку действуют на поверхности жидкости. Молекулы ПАВ можно представить в виде головастиков. Головами они «цепляются» за воду, а «хвостами» за жир. Когда ПАВ смешивают с водой, их молекулы на поверхности обращены «головами» вниз, а «хвостами» наружу. Раздробив таким образом поверхность воды, эти молекулы значительно уменьшают эффект поверхностного натяжения, тем самым помогая воде проникнуть в ткань. Этими же «хвостиками» молекулы ПАВ (Рис 6) захватывают попадающиеся им молекулы жира. 2

Опыт №4

1.Налили в блюдце молоко так, чтобы оно закрыло дно (Фото 4)

2. Капнули на поверхность молока 2 капля зеленки

3. Наблюдали, как зеленка «увлекается» от центра к краям. Две капли зеленки покрывают большую часть поверхности молока! (Фото 5)

Вывод: поверхностное натяжение зеленки, намного меньше, чем молока.

4. На поверхность зеленки капнули жидкость для мытья посуды «Fairy», мы увидели, как эта жидкость растеклась по всей поверхности.(Фото 6)

Вывод: поверхностное натяжение моющего средства меньше, чем зеленки.

Опыт№5

    В широкий стеклянный сосуд налили воду.

    На поверхность бросили кусочки пенопласта.

    Прикоснулись к центру поверхности воды кусочком сахара.

    Усочки пенопласта начинают двигаться от краев сосуда к центру (Фото 7).

Вывод: поверхностное натяжение водного раствора сахара больше, чем чистой воды.

Опыт№6

Удаление с поверхности ткани жирового пятна

Смочили бензином ватку и этой ваткой смочили края пятна (а не само пятно). Бензин уменьшает поверхностное натяжение, поэтому жир собирается к центру пятна и оттуда его можно удалить, этой же ваткой если же смачивать, само пятно, то оно может увеличиться в размерах вследствие уменьшения поверхностного натяжения.

Для экспериментального определения значения поверхностного натяжения жидкости можно использовать процесс образования и отрыва капель, вытекающих из капельницы.

Краткая теория методаотрыва капель

Малый объем жидкости сам по себе принимает форму, близкую к шару, так как благодаря малой массе жидкости мала и сила тяжести, действующая на нее. Этим объясняется шарообразная форма небольших капель жидкости. На рис.1 приведены фотографии, на которых показаны различные стадии процесса образования и отрыва капли. Фотография получена с помощью скоростной киносъемки, капля растет медленно, можно считать, что в каждый момент времени она находится в равновесии. Поверхностное натяжение вызывает сокращение поверхности капли, оно стремится придать капле сферическую форму. Сила тяжести располагает центр тяжести капли как можно ниже. В результате капля оказывается вытянутой (рис.7а).

Рис. 7. а б в г

Процесс образования и отрыва капель

Чем больше капля, тем большую роль играет потенциальная энергия силы тяжести. Основная масса по мере роста капли собирается внизу и у капли образуется шейка (рис.7б). Сила поверхностного натяжения направлена вертикально по касательной к шейке и она уравновешивает силу тяжести, действующую на каплю. Теперь достаточно капле совсем немного увеличиться и силы поверхностного натяжения уже не уравновешивают силу тяжести. Шейка капли быстро сужается (рис.7в) и в результате капля отрывается (рис.7г).

Метод измерения коэффициента поверхностного натяжения некоторых жидкостей основывается на взвешивании капель. В случае медленного вытекания жидкости из малого отверстия размер образующихся капель зависит от плотности жидкости, коэффициента поверхностного натяжения, размера и формы отверстия, а также от скорости истечения. При медленном вытекании смачивающей жидкости из вертикальной цилиндрической трубки образующаяся капля имеет форму, показанную на рисунке 8. Радиус r шейки капли связан с наружным радиусом трубки R соотношением r = kR (1)

где k - коэффициент, зависящий от размеров трубки и скорости вытекания.

Момент отрыва вес капли должен быть равен равнодействующей сил поверхностного натяжения, действующих по длине, равной протяженности контура шейки в самой ее узкой части. Таким образом, можно записать

Mg = 2πrơ (2)

Подставляя величину радиуса шейки r из равенства (1) и решая его, получим

Ơ =mg/2πkR (3)

Для определения массы капли, некоторое число n капель взвешивают в стакане известного веса. Если масса стаканчика без капель и с каплями будет соответственно М 0 и М, то масса одной капли

Подставляя последнее выражение в формулу (3) и вводя вместо радиуса трубки ее диаметр d, получим расчетную формулу

ơ = ((M-M0)g)/πkdn 3 (4)

Исследовательская работа «Определение коэффициента поверхностного натяжения некоторых жидкостей методом отрыва капель»

Цель исследования : определить коэффициент поверхностного натяжения жидкости методом отрыва капель некоторых жидкостей. Приборы : установка для измерения коэффициента поверхностного натяжения, весы, разновес, стаканчик, штангенциркуль, секундомер. Материалы : моющие средства: «Fairy», «Aos», молоко, спирт, бензин, растворы порошков: «Миф», «Persil», шампуни «Fruttis» , «Pantene », «Schauma» и «Fruttis» , гели для душа «Sensen », «Монпансье» и «Discover ».

Описание прибора .

Для определения коэффициента поверхностного натяжения собрали установку, состоящую из штатива, на котором установили бюретку с исследуемой жидкостью. На конце бюретки укрепили наконечник-трубку, на конце которой образуется капля. Взвешивание капель производили в специальном стаканчике.

Ход исследования

    С помощью штангенциркуля измерили диаметр наконечника-трубки три раза и вычислили среднее значение d.

    Взвесили на весах чистый сухой стаканчик (М 0).

    С помощью краника бюретки добились скорости вытекания капель

15 капель в минуту.

    Отлили из бюретки в стаканчик 60 капель жидкости, считая точно количество отлитых капель.

    Взвесили стаканчик с жидкостью. (М)

    Подставили полученные значения в формулу ơ = ((M-M0)g)/πkdn

    Вычислили коэффициент поверхностного натяжения.

    Провели опыт три раза

    Вычислили среднее значение коэффициента поверхностного натяжения.

Коэффициент поверхностного натяжения в системе СИ измеряется в Н/м.

Таблица №1

Результаты определения коэффициента поверхностного натяжения (Н/м)

Жидкость

Коэффициент поверхностного натяжения

Измеренное

Табличное

Спирт этиловый

Молоко (2,5)

Молоко (коровье домашнее)

Раствор порошка «Миф»

Раствор порошка «Persil»

Моющее средство «Fairy»

Моющее средство «Aos»

Вывод: Из исследованных кухонных моющих средств, при всех остальных одинаковых параметрах, влияющих на качество «отмывания», лучше использовать средство «Fairy ». Из исследованных стиральных порошков «Миф », т.к. именно их растворы обладают наименьшим поверхностным натяжением. Следовательно, первое средство («Fairy ») лучше помогает смывать нерастворимые в воде жиры с посуды, являясь эмульгатором - средством, облегчающим получение эмульсий (взвесей мельчайших частиц жидкого вещества в воде). Второе («Миф ») лучше отстирывает бельё, проникая в поры между волокнами тканей. Заметим, что при использовании кухонных моющих средств, мы заставляем вещество (в частности жир) хотя бы на некоторое время растворится в воде, т.к. происходит «дробление» его на мельчайшие частицы. За это время рекомендуется смыть нанесенное моющее средство струей чистой воды, а не ополаскивать посуду через какое-то время в ёмкости. Кроме того исследовали поверхностное натяжение шампуней и гелей для душа. Из-за достаточно высокой вязкости этих жидкостей сложно точно определить коэффициент поверхностного натяжения их, но зато можно сравнить. Были исследованы (методом отрыва капель) шампуни «Pantene », «Schauma» и «Fruttis» , а также гели для душа «Sensen », «Монпансье» и «Discover ».

Вывод:

    Поверхностное натяжение уменьшается в шампунях на ряду «Fruttis» - «Schauma» - «Pantene», в гелях - в ряду «Монпансье» - «Discover» - «Senses».

    Поверхностное натяжение шампуней меньше поверхностного натяжения гелей (Например «Pantene » < «Senses » на 65 мН/м), что оправдывает их назначение: шампуни - для мытья волос, гели - для мытья тела.

    При всех остальных одинаковых характеристиках, влияющих на качество мытья, из исследованных шампуней лучше использовать «Pantene» (Рис. 9), из исследованных гелей для душа - «Senses»(Рис.10).

Метод отрыва капель, не будучи очень точным, однако, используется в медицинской практике. Этим методом определяют в диагностических целях поверхностное натяжение спинномозговой жидкости, желчи и т.д.

Заключение

1. Получены экспериментальные подтверждения теоретических выводов, доказывающие, что однородная жидкость принимает форму с минимальной свободной поверхностью

2. Проведены эксперименты с уменьшением и увеличением поверхностного натяжения, результаты которых доказали, чтомыло и синтетические моющие средства содержат вещества, повышающие смачивающие свойства воды за счет уменьшения силы поверхностного натяжения.

3. Для определения коэффициента поверхностного натяжения жидкостей

а) изучена краткая теория метода отрыва капель;

б) сконструирована и собрана экспериментальная установка;

в) вычислены средние значения коэффициента поверхностного натяжения различных жидкостей, сделаны выводы.

4. Результаты экспериментов и исследования представлены в виде таблицы и фотографий.

Работа над проектом позволила мне приобрести более широкие знания по разделу физики «Поверхностное натяжение».

Мне хочется закончить свой проект словами великого ученого физика

А. Эйнштейна :

«Мне достаточно испытать ощущение вечной тайны жизни, осознавать и интуитивно постигать чудесную структуру всего сущего и активно бороться, чтобы схватить пусть даже самую малую крупинку разума, который проявляется в Природе»

Список использованных источников и литературы

    http://www.physics.ru/

    http://greenfuture.ru/

    http://www.agym.spbu.ru/

    Буховцев Б.Б., Климонтович Ю. Л., Мякишев Г.Я., Физика, учебник для 9 класса средней школы - 4-е издание - М.: Просвещение, 1988 г. - 271 с.

    Касьянов В.А., Физика, 10 класс, учебник для общеобразовательных учебных заведений, М.: Дрофа, 2001г. - 410 с.

    Пинский А.А. Физика: учебник. Пособие для 10 классов с углубленным изучением физики. М.: Просвещение, 1993г. - 416 с.

    Юфанова И.Л. Занимательные вечера по физике в средней школе: книга для учителя. - М.: Просвещение, 1990г. -215с

    Чуянов В.Я., Энциклопедический словарь юного физика, М.: Педагогика, 1984г. - 350 с.

1 1 http://www.physics.ru/

2 http://greenfuture.ru

Поверхностное натяжение , стремление вещества (жидкости или твердой фазы) уменьшить избыток своей потенциальной энергии на границе раздела с др. фазой (поверхностную энергию). Определяется как работа, затрачиваемая на создание единицы площади поверхности раздела фаз (размерность Дж/м 2). Согласно другому определению, поверхностное натяжение - сила, отнесенная к единице длины контура, ограничивающего поверхность раздела фаз (размерность Н/м); эта сила действует тангенциально к поверхности и препятствует ее самопроизвольному увеличению.

Поверхностное натяжение - основная термодинамическая характеристика поверхностного слоя жидкости на границе с газовой фазой или другой жидкостью. Поверхностное натяжение различных жидкостей на границе с собственным паром изменяется в широких пределах: от единиц для сжиженных низкокипящих газов до нескольких тысяч мН/м для расплавленных тугоплавких веществ. Поверхностное натяжение зависит от температуры. Для многих однокомпонентных неассоциированных жидкостей (вода, расплавы солей, жидкие металлы) вдали от критической температуры хорошо выполняется линейная зависимость:

где s и s 0 - поверхностное натяжение при температурах T и T 0 соответственно, α≈0,1 мН/(м·К) - температурный коэффициент поверхностного натяжения . Основной способ регулирования поверхностного натяжения заключается в использовании поверхностно-активных веществ (ПАВ).

Поверхностное натяжение входит во многие уравнения физики, физической и коллоидной химии , электрохимии .

Оно определяет следующие величины:

1. капиллярное давление , где r 1 и r 2 - главные радиусы кривизны поверхности, и давление насыщенного пара р r над искривленной поверхностью жидкости: , где r - радиус кривизны поверхности, R - газовая постоянная, V n - молярный объем жидкости, p 0 - давление над плоской поверхностью (законы Лапласа и Кельвина, см. Капиллярные явления).

2. Краевой угол смачивания θ в контакте жидкости с поверхностью твердого тела: cos , где - удельная свободная поверхностные энергии твердого тела на границе с газом и жидкостью, - поверхностное натяжение жидкости (закон Юнга, см. Смачивание).

3. Адсорбцию ПАВ где μ - химический потенциал адсорбируемого вещества (уравнение Гиббса, см. Адсорбция). Для разбавленных растворов где с - молярная концентрация ПАВ.

4. Состояние адсорбционного слоя ПАВ на поверхности жидкости: (p s + a/A 2 )·(A - b )=kT , где p s =(s 0 —s) - двухмерное давление, s 0 и s - соответственно поверхностное натяжение чистой жидкости и той же жидкости при наличии адсорбционного слоя, а - постоянная (аналог постоянной Ван-дер-Ваальса), A - площадь поверхностного слоя, приходящаяся на одну адсорбированную молекулу, b - площадь, занимаемая 1 молекулой жидкости, k - постоянная Больцмана (уравнение Фрумкина-Фольмера, см. Поверхностная активность).


5. Электрокапиллярный эффект: - d s/d f = r s , где r s - плотность поверхностного заряда, f-потенциал электрода (уравнение Липмана, см. Электрокапиллярные явления).

6. Работу образования критического зародыша новой фазы W c . Например, при гомогенной конденсации пара при давлении , где p 0 - давление пара над плоской поверхностью жидкости (уравнение Гиббса, см. Зарождение новой фазы).

7. Длину l капиллярных волн на поверхности жидкости: , где ρ - плотность жидкости, τ - период колебаний, g - ускорение свободного падения.

8. Упругость жидких пленок со слоем ПАВ: модуль упругости , где s - площадь пленки (уравнение Гиббса, см. Тонкие пленки).

Поверхностное натяжение измерено для многих чистых веществ и смесей (растворов, расплавов) в широком интервале температур и составов. Поскольку поверхностное натяжение весьма чувствительно к наличию примесей, измерения разными методиками не всегда дают совпадающие значения.

Основные методы измерения следующие:

1. подъем смачивающих жидкостей в капиллярах. Высота подъема , где - разность плотностей жидкости и вытесняемого газа, ρ - радиус капилляра. Точность определения поверхностного натяжения растет с уменьшением отношения ρ/α (α -капиллярная постоянная жидкости).

2. Измерение максимального давления в газовом пузырьке (метод Ребиндера); расчет основан на уравнении Лапласа. При выдавливании пузырька в жидкость через калиброванный капилляр радиусом r перед моментом отрыва давление p m =2σ/r

3. Метод взвешивания капель (сталагмометрия): (уравнение Тейта), где G - общий вес n капель, оторвавшихся под действием силы тяжести от среза капиллярной трубки радиусом r . Для повышения точности правую часть умножают на поправочный коэфициент, зависящий от r и объема капли.

4. Метод уравновешивания пластины (метод Вильгельми). При погружении пластины с периметром сечения L в смачивающую жидкость вес пластины , где G 0 - вес сухой пластины.

5. Метод отрыва кольца (метод Дю Нуи). Для отрыва проволочного кольца радиусом R от поверхности жидкости требуется сила

6. Метод сидящей капли. Профиль капли на несмачиваемой подложке определяется из условия постоянства суммы гидростатического и капиллярного давлений. Дифференциальное уравнение профиля капли решается численным интегрированием (метод Башфорта-Адамса). По измерениям геометрических параметров профиля капли с помощью соответствующих таблиц находят поверхностное натяжение .

7. Метод вращающейся капли. Капля жидкости плотностью r 1 помещается в трубку с более тяжелой (плотность r 2) жидкостью. При вращении трубки с угловой скоростью ω капля вытягивается вдоль оси, принимая приближенно форму цилиндра радиуса r . Расчетное уравнение: . Метод применяют для измерения малых поверхностных натяжений на границе двух жидкостей.

Поверхностное натяжение является определяющим фактором многих технологических процессов: флотации, пропитки пористых материалов, нанесения покрытий, моющего действия, порошковой металлургии, пайки и др. Велика роль поверхностного натяжения в процессах, происходящих в невесомости.

Понятие поверхностного натяжения впервые ввел Я. Сегнер (1752). В первой половине XIX в. на основе представления о поверхностном натяжении была развита математическая теория капиллярных явлений (П. Лаплас, С. Пуассон, К. Гаусс, А.Ю. Давидов). Во второй половине XIX в. Дж.Гиббс развил термодинамическую теорию поверхностных явлений, в которой решающую роль играет поверхностное натяжение . В XX в. разрабатываются методы регулирования поверхностного натяжения с помощью ПАВ и электрокапиллярных эффектов (И. Ленгмюр, П.А. Ребиндер, A.H. Фрумкнн). Среди современных актуальных проблем - развитие молекулярной теории поверхностного натяжения различных жидкостей (включая расплавленные металлы), влияние кривизны поверхности на поверхностное натяжение.

На этом уроке пойдет речь о жидкостях и их свойствах. С точки зрения современной физики, жидкости являются наиболее сложным предметом исследований, потому что по сравнению с газами уже нельзя говорить о пренебрежимо малой энергии взаимодействия между молекулами, а по сравнению с твердыми телами нельзя говорить об упорядоченном расположении молекул жидкости (в жидкости отсутствует дальний порядок). Это приводит к тому, что жидкости обладают рядом интереснейших свойств и их проявлений. Об одном таком свойстве и пойдет речь на этом уроке.

Для начала, обсудим особые свойства, которыми обладают молекулы приповерхностного слоя жидкости по сравнению с молекулами, находящимися в объеме.

Рис. 1. Отличие молекул приповерхностного слоя от молекул, находящихся в объеме жидкости

Рассмотрим две молекулы А и Б. Молекула А находится внутри жидкости, молекула Б - на ее поверхности (Рис. 1). Молекула А окружена другими молекулами жидкости равномерно, поэтому силы, действующие на молекулу А со стороны молекул, попадающих в сферу межмолекулярного взаимодействия, скомпенсированы, или их равнодействующая равна нулю.

Что же происходит с молекулой Б, которая находится у поверхности жидкости? Напомним, что концентрация молекул газа, который находится над жидкостью, значительно меньше, чем концентрация молекул жидкости. Молекула Б с одной стороны окружена молекулами жидкости, а с другой стороны - сильно разреженными молекулами газа. Поскольку со стороны жидкости на нее действует гораздо больше молекул, то равнодействующая всех межмолекулярных сил будет направлена внутрь жидкости.

Таким образом, для того чтобы молекула из глубины жидкости попала в поверхностный слой, нужно совершить работу против не скомпенсированных межмолекулярных сил.

Вспомним, что работа - это изменение потенциальной энергии, взятое со знаком минус.

Значит, молекулы приповерхностного слоя, по сравнению с молекулами внутри жидкости, обладают избыточной потенциальной энергией.

Эта избыточная энергия является составляющей внутренней энергии жидкости и называется поверхностной энергией . Обозначается она, как , и измеряется, как и любая другая энергия, в джоулях.

Очевидно, что чем больше площадь поверхности жидкости, тем больше таких молекул, которые обладают избыточной потенциальной энергией, а значит тем больше поверхностная энергия. Этот факт можно записать в виде следующего соотношения:

,

где - площадь поверхности, а - коэффициент пропорциональности, который мы назовем коэффициентом поверхностного натяжения , этот коэффициент характеризует ту, или иную жидкость. Запишем строгое определение этой величины.

Поверхностное натяжение жидкости (коэффициент поверхностного натяжения жидкости) - это физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости

Измеряется коэффициент поверхностного натяжения в ньютонах, деленных на метр.

Обсудим, от чего зависит коэффициент поверхностного натяжения жидкости. Для начала, вспомним, что коэффициент поверхностного натяжения характеризует удельную энергию взаимодействия молекул, а значит факторы, изменяющие эту энергию, изменят и коэффициент поверхностного натяжения жидкости.

Итак, коэффициент поверхностного натяжения зависит от:

1. Природы жидкости (у «летучих» жидкостей, таких как эфир, спирт и бензин, поверхностное натяжение меньше, чем у «нелетучих» - воды, ртути и жидких металлов).

2. Температуры (чем выше температура, тем меньше поверхностное натяжение).

3. Наличие поверхностно активных веществ, уменьшающих поверхностное натяжение (ПАВ), например мыла или стирального порошка.

4. Свойства газа, граничащего с жидкостью.

Отметим, что коэффициент поверхностного натяжения не зависит от площади поверхности, так как для одной отдельно взятой приповерхностной молекулы абсолютно неважно, сколько таких же молекул вокруг. Обратите внимание на таблицу, в которой приведены коэффициенты поверхностного натяжения различных веществ, при температуре :

Таблица 1. Коэффициенты поверхностного натяжения жидкостей на границе с воздухом, при

Итак, молекулы приповерхностного слоя обладают избыточной потенциальной энергией по сравнению с молекулами в объеме жидкости. В курсе механики было показано, что любая система стремится к минимуму потенциальной энергии. Например, тело, брошенное с некоторой высоты, будет стремиться упасть вниз. Кроме того, вы чувствуете себя намного комфортнее лёжа, поскольку в этом случае максимально низко расположен центр масс вашего тела. К чему приводит стремление уменьшить свою потенциальную энергию в случае жидкости? Поскольку поверхностная энергия зависит от площади поверхности, значит, любой жидкости энергетически невыгодно иметь большую площадь поверхности. Иными словами, в свободном состоянии жидкость будет стремиться сделать свою поверхность минимальной.

В этом легко убедиться, экспериментируя с мыльной пленкой. Если окунуть в мыльный раствор некий проволочный каркас, то на нем образуется мыльная пленка, при чем пленка приобретет такую форму, чтобы площадь ее поверхности была минимальной (Рис. 2).

Рис. 2. Фигуры из мыльного раствора

Убедиться в существовании сил поверхностного натяжения можно при помощи простого эксперимента. Если к проволочному кольцу в двух местах привязана нить, причем так, чтобы длина нити была несколько больше длины хорды, соединяющей точки крепления нити, и обмакнуть проволочное кольцо в мыльный раствор (Рис. 3а), мыльная пленка затянет всю поверхность кольца и нить будет лежать на мыльной пленке. Если теперь порвать пленку с одной стороны нити, мыльная пленка, оставшаяся с другой стороны нити, сократится и натянет нить (Рис. 3б).

Рис. 3. Эксперимент по обнаружению сил поверхностного натяжения

Почему же так произошло? Дело в том, что оставшийся сверху мыльный раствор, то есть жидкость, стремится сократить площадь своей поверхности. Таким образом, нить вытягивается вверх.

Итак, в существовании силы поверхностного натяжения мы убедились. Теперь научимся ее рассчитывать. Для этого проведем мысленный эксперимент. Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна (Рис. 4). Будем растягивать мыльную пленку, действуя на подвижную сторону рамки силой . Таким образом, на перекладину действуют три силы - внешняя сила и две силы поверхностного натяжения , действующие вдоль каждой поверхности пленки. Воспользовавшись вторым законом Ньютона, можем записать, что

Рис. 4. Вычисление силы поверхностного натяжения

Если под действием внешней силы перекладина переместится на расстояние , то эта внешняя сила совершит работу

Естественно, что за счет совершения этой работы площадь поверхности пленки увеличится, а значит, увеличится и поверхностная энергия, которую мы можем определить через коэффициент поверхностного натяжения:

Изменение площади, в свою очередь можно определить следующим образом:

где - длина подвижной части проволочной рамки. Учитывая это, можно записать, что работа внешней силы равна

Приравнивая правые части в (*) и (**), получим выражение для силы поверхностного натяжения:

Таким образом, коэффициент поверхностного натяжения численно равен силе поверхностного натяжения, которая действует на единицу длины линии, ограничивающей поверхность

Итак, мы еще раз убедились в том, что жидкость стремится принять такую форму, чтобы площадь ее поверхности была минимальной. Можно показать, что при заданном объеме площадь поверхности будет минимальной у шара. Таким образом, если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать сферическую форму. Так, например, будет вести себя вода в невесомости (Рис. 5) или мыльные пузыри (Рис. 6).

Рис. 5. Вода в невесомости

Рис. 6. Мыльные пузыри

Наличием сил поверхностного натяжения также можно объяснить то, почему металлическая иголка «лежит» на поверхности воды (Рис. 7). Иголка, которую аккуратно положили на поверхность, деформирует ее, увеличивая тем самым площадь этой поверхности. Таким образом, возникает сила поверхностного натяжения, которая стремится уменьшить подобное изменение площади. Равнодействующая сил поверхностного натяжения будет направлена вверх, и она скомпенсирует силу тяжести.


Рис. 7. Иголка на поверхности воды

Таким же образом можно объяснить принцип действия пипетки. Капелька, на которую действует сила тяжести, вытягивается вниз, тем самым увеличивая площадь своей поверхности. Естественно, возникают силы поверхностного натяжения, равнодействующая которых противоположна направлению силы тяжести, и которые не дают капельке растягиваться (Рис. 8). Когда вы нажимаете на резиновый колпачок пипетки, вы тем самым создаете дополнительное давление, которое помогает силе тяжести, и в результате, капля падает вниз.

Рис. 8. Принцип работы пипетки

Приведем еще один пример из повседневной жизни. Если опустить кисточку для рисования в стакан с водой, то ее волоски распушатся. Если теперь вынуть эту кисточку из воды, то вы заметите, что все волоски прилипли друг к другу. Это связано с тем, что площадь поверхности воды, налипшей на кисточку, в таком случае будет минимальной.

И еще один пример. Если вы захотите построить замок из сухого песка, это у вас вряд ли получится, поскольку песок будет рассыпаться под действием силы тяжести. Однако если вы намочите песок, то он будет сохранять свою форму благодаря силам поверхностного натяжения воды между песчинками.

Наконец, отметим, что теория поверхностного натяжения помогает найти красивые и простые аналогии при решении более сложных физических задач. Например, когда нужно построить лёгкую и в то же время прочную конструкцию, на помощь приходит физика того, что происходит в мыльных пузырях. А построить первую адекватную модель атомного ядра удалось, уподобив это атомное ядро капле заряженной жидкости.

Список литературы

  1. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. «Физика 10». - М.: Просвещение, 2008.
  2. Я. Е. Гегузин «Пузыри», Библиотека Квант. - М.: Наука, 1985.
  3. Б. М. Яворский, А. А. Пинский «Основы физики» т. 1.
  4. Г. С. Ландсберг «Элементарный учебник физики» т. 1.
  1. Nkj.ru ().
  2. Youtube.com ().
  3. Youtube.com ().
  4. Youtube.com ().

Домашнее задание

  1. Решив задачи к данному уроку, вы сможете подготовиться к вопросам 7,8,9 ГИА и вопросам А8, А9, A10 ЕГЭ.
  2. Гельфгат И.М., Ненашев И.Ю. «Физика. Сборник задач 10 класс» 5.34, 5.43, 5.44, 5.47 ()
  3. Опираясь на задачу 5.47, определите коэффициент поверхностного натяжения воды и мыльного раствора.

Список вопросов-ответов

Вопрос: Почему поверхностное натяжение меняется с изменением температуры?

Ответ: При увеличении температуры, молекулы жидкости начинают двигаться быстрее, и следовательно, молекулы легче преодолевают потенциальные силы притяжения. Что и приводит к уменьшению сил поверхностного натяжения, являющихся потенциальными силами, которыми связываются молекулы приповерхностного слоя жидкости.

Вопрос: Зависит ли коэффициент поверхностного натяжения от плотности жидкости?

Ответ: Да, зависит, поскольку от плотности жидкости зависит энергия молекул приповерхностного слоя жидкости.

Вопрос: Какие существуют способы определения коэффициента поверхностного натяжения жидкости?

Ответ: В школьном курсе изучаютдва способа определениякоэффициента поверхностного натяжения жидкости. Первый - это метод отрыва проволочки, его принцип описан в задаче 5.44 из домашнего задания, второй - метод счета капель, описанный в задаче 5.47.

Вопрос: Почему через некоторое время мыльные пузыри разрушаются?

Ответ: Дело в том, что через некоторое время, под действием силы тяжести пузырь становится толще внизу, чем вверху, и затем под влиянием испарения разрушается в какой-либо точке. Это приводит к тому, что весь пузырь, подобно воздушному шарику, схлопывается под действием не скомпенсированных сил поверхностного натяжения.