Методы измерения скорости света. Скорость света и методы ее определения Значение скорости света полученное ремером

Экспериментальные методы определения скорости света

Существуют различные методы измерения скорости света, в том числе астрономические и с использованием различной экспериментальной техники. Точность измерения величины с постоянно увеличивается. В данной таблице дан неполный перечень экспериментальных работ по определению скорости света.

Эксперимент

Экспериментальные методы

Результаты измерений, км/сек

Эксперимента

погрешность,

Вебер-Кольрауш

Максвелл

Майкельсон

Перротин

Роза и дорси

Миттелыптедта

Пиз и Пирсона

Андерсон

Затмение спутника юпитера

Аберрация света

Движущиеся тела

Вращающиеся зеркала

Электромагнитные постоянные

Электромагнитные постоянные

Вращающиеся зеркала

Вращающиеся зеркала

Электромагнитные постоянные

Вращающиеся зеркала

Вращающиеся зеркала

Электромагнитные постоянные

Ячейка затвора Керра

Вращающиеся зеркала

Ячейка затвора Керра

Микроволновая интерферометрия

Первое удачное измерение скорости света относится к 1676 г. Астрономический метод Рёмера основывается на измерении скорости света по наблюдениям с Земли затмений спутников Юпитера. Юпитер имеет несколько спутников, которые либо видны с Земли вблизи Юпитера, либо скрываются в его тени. Астрономические наблюдения над спутниками Юпитера показывают, что средний промежуток времени между двумя последовательными затмениями какого-нибудь определенного спутника Юпитера зависит от того, на каком расстоянии друг от друга находятся Земля и Юпитер во время наблюдений.

Рис. 1. Метод Ремера. С - Солнце, Ю - Юпитер, З - Земля

За полгода наблюдения нарушение периодичности наблюдаемого начала затмения возрастали, достигая величины около 20 мин. Но это почти равно времени, за которое свет проходит расстояние, равное диаметру орбиты движения Земли вокруг Солнца (порядка 17 мин.). Скорость света, измеренная Рёмером, была равна: c= 214300 км/с.

По истечение еще 0,545 года Земля З3 и Юпитер Ю3 будут вновь находиться в противостоянии. За это время совершилось (n-1) оборотов спутника вокруг Юпитера и (n-1) затмений, из которых первое имело место, когда Земля и Юпитер занимали положения З2 и Ю2, а последнее - когда они занимали положение З3 и Ю3. Первое затмение наблюдалось на Земле с запозданием (R+r)/с, а последнее с запозданием (R-r)/c по отношению к моментам ухода спутника в тень планеты Юпитера.

Рёмер измерил промежутки времени Т1 и Т2 и нашел, что Т1-Т2=1980 с. Но из написанных выше формул следует, что Т1-Т2=4r/с, поэтому с=4r/1980 м/с. Принимая r, среднее расстояние от Земли до Солнца, равным 1500000000 км, находим для скорости света значение:

Этот результат был первым измерением скорости света. Метод Рёмера был не очень точен, но именно его расчеты показали астрономам, что для определения истинного движения планет и их спутников необходимо учитывать время распространения светового сигнала.

Рис. 2

Определение скорости света по наблюдению аберрации в 1725-1728 гг. Брадлей предпринял наблюдение с целью выяснить, существует ли годичный параллакс звезд, т.е. кажущееся смещение звезд на небесном своде, отображающее движение Земли по орбите и связанное с конечностью расстояния от Земли до звезды.

Брадлей действительно обнаружил подобное смещение. Он объяснил наблюдаемое явление, названное им аберрацией света, конечной величиной скорости распространения света и использовал его для определения этой скорости.

Зная угол α и скорость движения Земли по орбите v, можно определить скорость света c. У него получилось значение скорости света равной 308000 км/с. Важно заметить, что аберрация света связана с изменением направления скорости Земли в течение года. Постоянную скорость, как бы велика она ни была, нельзя обнаружить с помощью аберрации, ибо при таком движении направление на звезду остается неизменным и нет возможности судить о наличии этой скорости и о том, какой угол с направлением на звезду она составляет. Аберрация света позволяет судить лишь об изменении скорости Земли.

В 1849 г. впервые определение скорости света выполнил вы лабораторных условиях А. Физо. Его метод назывался методом зубчатого колеса. Характерной особенностью его метода является автоматическая регистрация моментов пуска и возвращения сигнала, осуществляемая путем регулярного прерывания светового потока (зубчатое колесо).

Рис 3 . Схема опыта по определению скорости света методом зубчатого колеса

Свет от источника проходил через прерыватель (зубья вращающегося колеса) и, отразившись от зеркала, возвращался опять к зубчатому колесу. Зная расстояние между колесом и зеркалом, число зубьев колеса, скорость вращения, можно вычислить скорость света.

Зная расстояние D, число зубьев z, угловую скорость вращения (число оборотов в секунду) v, можно определить скорость света. У него получилось она равной 313000 км/с.

Разрабатывали много способов, чтобы еще повысить точность измерений. Вскоре даже стало необходимо учитывать показатель преломления в воздухе. И вскоре в 1958 г. Фрум получил значение скорости света равной 299792,5 км/с, применяя микроволновый интерферометр и электрооптический затвор (ячейку Керра).

Эффект Доплера в оптике

Экспериментальные основания специальной теории относительности

Современные методы измерения скорости света

Распространение света в движущихся средах

Классические опыты по измерению скорости света

Задача определения скорости света принадлежит к числу важнейших проблем оптики и физики вообще. Решение этой задачи имело огромное принципиальное и практическое значение. Установление того, что скорость распространения света конечна, и измерение этой скорости сделали более конкретными и ясными трудности, стоящие перед различными оптическими теориями. Первые методы определения скорости света, опиравшиеся на астрономические наблюдения, способствовали со своей стороны ясному пониманию чисто астрономических вопросов. Точные лабораторные методы определения скорости света, выработанные в последствии, используются при геодезической съёмке.

Основная трудность, на которую наталкивается экспериментатор при определении скорости распространения света, связана с огромным значением этой величины, требующим совсем иных масштабов опыта, чем те, которые имеют место в классических физических измерениях. Эта трудность дала себя знать в первых научных попытках определения скорости света, предпринятых ещё Галилеем (1607 г.). Опыт Галилея состоял в следующем: два наблюдателя на большом расстоянии друг о


друга снабжены закрывающимися фонарями. Наблюдатель А открывает фонарь; через известный промежуток времени свет дойдет до наблюдателя В, который в тот же момент открывает свой фонарь; спустя определенное время этот сигнал дойдет до А , и последний может, таким образом, отметить время τ , протекшее от момента подачи им сигнала до момента его возвращения. Предполагая, что наблюдатели реагируют на сигнал мгновенно и что свет обладает одной и той же скоростью в направлении АВ и ВА, получим, что путь АВ +ВА =2D свет проходит за время τ , т.е. скорость света с =2D /τ . Второе из сделанных допущений может считаться весьма правдоподобным. Современная теория относительности возводит даже это допущение в принцип. Но предположение о возможности мгновенно реагировать на сигнал не соответствует действительности, и поэтому при огромной скорости света попытка Галилея не привела ни к каким результатам; по существу, измерялось не время распространения светового сигнала, а время, потраченное наблюдателем на реакцию. Положение можно улучшить, если наблюдателя В заменить зеркалом, отражающим свет, освободившись таким образом от ошибки, вносимой одним из наблюдателей. Эта схема измерений осталась, по существу, почти во всех современных лабораторных приемах определения скорости света; однако впоследствии были найдены превосходные приемы регистрации сигналов и измерения промежутков времени, что и позволило определить скорость света с достаточной точностью даже на сравнительно небольших расстояниях.



а) Метод Рёмера.

Юпитер имеет несколько спутников, которые либо видны с Земли вблизи Юпитера, либо скрываются в его тени. Астрономические наблюдения над спутниками Юпитера показывают, что средний промежуток времени между двумя последовательными затмениями какого-нибудь определённого спутника Юпитера зависит от того, на каком расстоянии друг от друга находятся Земля и Юпитер во время наблюдений.

Метод Рёмера (1676 г.), основанный на этих наблюдениях, можно пояснить с помощью рис.9.1. Пусть в определённый момент времени Земля З 1 и Юпитер Ю 1 находятся в противостоянии и в этот момент времени один из спутников Юпитера, наблюдаемый с Земли, исчезает в тени Юпитера. Тогда, если обозначить через R и r радиусы орбит Юпитера и Земли и через с – скорость света в системе координат, связанной с Солнцем, на Земле уход спутника в тень Юпитера будет зарегистрирован на секунд позже, чем он совершается во временной системе отсчёта, связанной с Юпитером.

По истечении 0,545 года Земля З 2 и Юпитер Ю 2 находятся в соединении . Если в это время происходит n -е затмение того же спутника Юпитера, то на Земле оно будет зарегистрировано с опозданием на секунд. Поэтому, если период обращения спутника вокруг Юпитера t , то промежуток времени T 1 , протекший между первым и n -м затмениями, наблюдавшимися с Земли, равен

По истечении ещё 0,545 года Земля З 3 и Юпитер Ю 3 будут вновь находиться в противостоянии . За это время совершились (n –1) оборотов спутника вокруг Юпитера и (n –1) затмений, из которых первое имело место, когда Земля и Юпитер занимали положения З 2 и Ю 2 , а последнее – когда они занимали положение З 3 и Ю 3 . Первое затмение наблюдалось на Земле с запозданием , а последнее с запозданием по отношению к моментам ухода спутника в тень планеты Юпитера. Следовательно, в этом случае имеем:

Рёмер измерил промежутки времени Т 1 и Т 2 и нашёл, что Т 1 –Т 2 =1980 с. Но из написанных выше формул следует, что Т 1 –Т 2 =, поэтому . Принимая r , среднее расстояние от Земли до Солнца, равным 150·10 6 км, находим для скорости света значение: с =301·10 6 м/с.

Этот результат был исторически первым измерением скорости света.

б) Определение скорости света по наблюдению аберрации.

В 1725-1728 гг. Брадлей предпринял наблюдения с целью выяснить, существует ли годичный параллакс звёзд, т.е. кажущееся смещение звёзд на небесном своде, отображающее движение Земли по орбите и связанное с конечностью расстояния от Земли до звезды. Звезда в своём параллактическом движении должна описывать эллипс, угловые размеры которого тем больше, чем меньше расстояние до звезды.

Для звёзд, лежащих в плоскости эклиптики, этот эллипс вырождается в прямую, а для звёзд у полюса – в окружность. Брадлей действительно обнаружил подобное смещение. Но большая ось эллипса оказалась для всех звёзд имеющие одни и те же угловые размеры, а именно 2α =40",9. Брадлей объяснил (1728 г.) наблюдённое явление, названное им аберрацией света , конечностью скорости распространения света и использовал его для определения этой скорости. Годичный параллакс был установлен более ста лет спустя В.Я. Струве и Бесселем (1837, 1838 гг.).

Для простоты будем вместо телескопа пользоваться визирным приспособлением, состоящим из двух небольших отверстий, расположенных по оси трубы. Когда скорость Земли совпадает по направлению с SE , ось трубы указывает на звезду. Когда же скорость Земли (и трубы) составляет угол j с направлением на звезду, то для того, чтобы луч света оставался на оси трубы, трубу надо повернуть на угол a (рис. 9.2), ибо за время t , пока свет проходит путь SE , сама труба перемещается на расстояние E"Е =u 0 t . Из рис. 9.2 можно определить поворот a . Здесь SE определяет направление оси трубы без учёта аберрации, SE" – смещенное направление оси, обеспечивающее прохождение света вдоль оси трубы в течение всего времени t . Пользуясь тем, что угол a очень мал, так как u 0 <<с (пренебрегая членами порядка ), можно считать, чтоj =0 или p.

Если звезда находится в полюсе эклиптики, то j =90° в течение всего года, т.е. угловое отклонение звезды сохраняется неизменным по величине (); но так как направление вектора u 0 изменяется в течение года на угол 2p , то и угловое смещение звезды меняется по направлению: звезда описывает кажущуюся круговую орбиту с угловым радиусом .

В общем случае, когда звезда расположена на угловом расстоянии d от плоскости эклиптики, аберрационная траектория звезды представляет собой эллипс, большая полуось которого имеет угловые размеры a 0 , а малая – a 0 sind . Именно такой характер и носило кажущееся смещение звёзд по наблюдению Брадлея. Определив из наблюдений a 0 и зная u 0 , можно найти с. Брадлей нашёл с =308 000 км/с. В. Я. Струве (1845 г.) значительно улучшил точность наблюдений и получил a 0 =20",445. Самые последние определения дают a 0 =20",470, чему соответствует с =299 900 км/с.

Следует отметить, что аберрация света связана с изменением направления скорости Земли в течение года.

Существуют различные методы измерения скорости света, в том числе астрономические и с использованием различной экспериментальной техники. Точность измерения величины С постоянно увеличивается. В таблице дан неполный перечень экспериментальных работ по определению скорости света.

Дата

Эксперимент

Экспериментальные методы

Результаты измерений, км/сек

1676

1725

1849

1850

1857

1868

1875

1880

1883

1883

1901

1907

1928

1932

1941

1952

Рёмер

Брадли

Физо

Фуко

Вебер-Кольрауш

Максвелл

Корню

Майкельсон

Томсон

Ньюкомб

Перротин

Роза и дорси

Миттелыптедта

Пиз и Пирсона

Андерсон

Фрум

Затмение спутника Юпитера

Абберация света

Движущие тела

Вращающиеся зеркала

Электромагнитные постоянные

Электромагнитные постоянные

Вращающиеся зеркала

Вращающиеся зеркала

Электромагнитные постоянные

Вращающиеся зеркала

Вращающиеся зеркала

Электромагнитные постоянные

Ячейка затвора Керра

Вращающиеся зеркала

Ячейка затвора Керра

Микроволновая интерферометрия

214 459

308 000

313 290

298 000

310 000

288 000

299 990

299 910

282 000

299 880

299 777

299 784

299 778

299 774

299 782

299 792.45

Первое удачное измерение скорость света относится к 1676 г.

На рисунках представлены репродукция рисунка самого Рёмера, а также схематическая трактовка.

Астрономический метод Рёмера основывается на измерении скорости света по наблюдениям с Земли затмений спутников Юпитера . Юпитер имеет нескольк о спутников, которые либо видны с Земли вблизи Юпитера, либо

скрываются в его тени. Астрономические наблюдения над спу тниками Юпитера показывают, что средний промежуток вре мени между двумя последовательными затмениями какого-нибудь определенного спутника Юпитера зависит от того, на каком расстоянии друг от друга находятся Земля и Юпитер во время наблюдений. На рисунке: Метод Ремера. С - солнце, Ю - юпитер, З – земля.

Пусть в определенный момент времени Земля З1 и Юпитер Ю1 находятся в противоположении, и в этот момент времени один из спутников Юпитера, наблюдаемый с Земли, исчезает в тени Юпитера (спутник на рисунке не показан). Тогда, если обозначить через R и r радиусы орбит Юпитера и Земли и через c – скорость св ета в системе координат, связанной с Солнцем С, на Земле уход спутника в тень Юпитера будет зарегистрирован на (R-r)/с секунд позже, чем он совершается во временной системе отчета, связанной с Юпитером.

По истечении 0,545 года Земля З2 и Юпитер Ю2 находятся в соединении. Если в это время происходит n-е затмение того же спутника Юпитера, то на Земле оно будет зарегистрировано с опозданием на (R+r)/с секунд. Поэтому, если период обращения спутника вокруг Юпитера t, то промежуток времени T1, протекающий между первым и n-м затмениями, наблюдавшимися с Земли, равен

По истечении еще 0,545 года Земля З3 и Юпитер Ю3 будут вновь находиться в противостоянии. За это время совершилось (n-1) оборотов спутника вокруг Юпитера и (n-1) затмений, из которых первое имело место, когда Земля и Юпитер занимали положения З2 и Ю2, а последнее – когда они занимали положение З3 и Ю3. Первое затмение наблюдалось на Земле с запозданием (R+r)/с, а последнее с запозданием (R-r)/c по отношению к моментам ухода спутника в тень планеты Юпитера. Следовательно, в этом случае имеем

Рёмер измерил промежутки времени Т1 и Т2 и нашел, что Т1-Т2=1980 с. Но из написанных выше формул следует, что Т1-Т2=4r/с, поэтому с=4r/1980 м/с. Принимая r, среднее расстояние от Земли до Солнца, равным 1500000000 км, находим для скорости света значение 3,01*10 6 м/с.

Этот результат был первым измерением скорости света.

В 1725 г. Джеймс Брэдли обнаружил, что звезда Дракона, находящаяся в зените (т.е. непосредственно над головой), совершает кажущееся движение с периодом в один год по почти круговой орбите с диаметром равным 40,5 дуговой секунды. Для звезд, видимых в других местах небесного свода, Брэдли также наблюдал подобное кажущееся движение - в общем случае эллиптическое.

Явление, наблюдавшееся Брэдли, называется аберрацией. Оно не имеет ничего общего с собственным движением звезды. Причина аберрации заключается в том, что величина скорости света конечна, а наблюдение ведется с Земли, движущейся по орбите с некоторой скоростью v.

Угол раствора конуса, под которым с Земли видна кажущаяся траектория звезды, определяется выражением: tgα=ν/c

Зная угол α и скорость движения Земли по орбите v, можно определить скорость света c.

У него получилось значение скорости света равной 308000 км/с.

В 1849 г. впервые определение скорости света выполнил вы лабораторных условиях А. Физо . Его метод назывался методом зубчатого колеса. Характерной особенностью его метода является автоматическая регистрация моментов пуска и возвращения сигнала, осуществляемая путем регулярного прерывания светового потока (зубчатое колесо).

На рис представлена схема опыта по определению скорости света методом зубчатого колеса.

Свет от источника проходил через прерыватель (зубья вращающегося колеса) и, отразившись от зеркала, возвращался опять к зубчатому колесу. Зная расстояние между колесом и зеркалом, число зубьев колеса, скорость вращения, можно вычислить скорость света.

Зная расстояние D, число зубьев z, угловую скорость вращения (число оборотов в секунду) v, можно определить скорость света. У него получилось она равной 313000 км/с.

В течение всей своей жизни американский физик Альберт Абрахам Майкельсон (1852–1931) совершенствовал методику измерения скорости света. Создавая все более сложные установки, он пытался получить результаты с минимальной погрешностью. В 1924–1927 годах Майкельсон разработал схему опыта, в котором луч света посылался с вершины горы Вильсон на вершину Сан-Антонио (расстояние порядка 35 км). В качестве вращающегося затвора было использовано вращающееся зеркало, изготовленное с чрезвычайной точностью и приводимое в движение специально разработанным высокоскоростным ротором, делающим до 528 оборотов в секунду.

Изменяя частоту вращения ротора, наблюдатель добивался возникновения в окуляре устойчивого изображения источника света. Знание расстояния между установками и частоты вращения зеркала позволяли вычислить скорость света.

Начиная с 1924 года и до начала 1927 года было проведено пять независимых серий наблюдений, повышалась точность измерения расстояния и частоты вращения ротора. Средний результат измерений составил 299 798 км в секунду.

Результаты же всех измерений Майкельсона можно записать как c = (299796 ± 4) км/с.

На верхнем рисунке изображена схема опыта Майкельсона. На нижнем рисунке представлена упрощенная схема опыта. Пользователь может изменять частоту вращения восьмиугольной призмы, наблюдая за движением светового импульса и добиваясь его попадания в окуляр наблюдателя.

Частоту можно изменять от 0 до 1100 оборотов в секунду с шагом 2 с –1 . Чтобы легче было выставлять частоту в эксперименте, сделана ручка грубого регулятора частоты вращения, более точные настройки можно выставлять с помощью дополнительных клавиш справа от окна частоты. Оптимальный результат достигается при 528 и 1056 оборотах в секунду. При 0 оборотов рисуется статичный луч света от источника до наблюдателя.

Пример расчета скорости света для эксперимента, при котором появление света наблюдатель фиксирует при частоте вращения зеркала 528 с –1 .

Здесь ν и T – частота и период вращения восьмигранной призмы, τ 1 – время, за которое световой пучок успевает пройти расстояние L от одной установки до другой и вернутся обратно, оно же – время поворота одной грани зеркала.

По материалам www.school-collection.edu.ru

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Скорость света и методы ее определения

План

Введение

1. Астрономические методы измерения скорости света

1.1 Метод Рёмера

1.2 Метод аберрации света

1.3 Метод прерываний (метод Физо)

1.4 Метод вращающегося зеркала (метод Фуко)

1.5 Метод Майкельсона

Введение

Скорость света - одна из наиболее важных физических констант, которые называют фундаментальными. Эта константа имеет особое значение как в теоретической, так и в экспериментальной физике и смежных с нею науках. Точное значение скорости света требуется знать в радио- и светолокации, при измерении расстояний от Земли до других планет, управлении спутниками и космическими кораблями. Определение скорости света наиболее важно для оптики, в частности, для оптики движущихся сред, и физики вообще. Познакомимся с методами определения скорости света.

1. Астрономические методы измерения скорости света

1.1 Метод Рёмера

Первые измерения скорости света были основаны на астрономических наблюдениях. Достоверное значение скорости света, близкое к современному ее значению, было получено впервые Рёмером в 1676 году при наблюдении затмений спутников планеты Юпитер.

Время прохождения светового сигнала от небесного светила до Земли зависит от дальности L расположения светила. Явление, происходящее на каком-то небесном теле, наблюдается с запаздыванием, равным времени прохождения света от светила до Земли:

где с - скорость света.

Если наблюдать какой-либо периодический процесс, происходящий в удаленной от Земли системе, то при неизменном расстоянии между Землей и системой наличие этого запаздывания не будет влиять на период наблюдаемого процесса. Если же за время периода Земля удалится от системы или приблизится к ней, то в первом случае окончание периода будет зарегистрировано с большим запаздыванием, чем его начало, что приведет к кажущемуся увеличению периода. Во втором случае, наоборот, окончание периода будет зафиксировано с меньшим запаздыванием, чем его начало, что приведет к кажущемуся уменьшению периода. В обоих случаях кажущееся изменение периода равно отношению разности расстояний между землей и системой в начале и конце периода к скорости света.

Изложенные соображения лежат в основе метода Рёмера.

Рёмер проводил наблюдения за спутником Ио, период обращения которого 42 ч 27 мин 33 с.

При движении Земли по участку орбиты Е 1 Е 2 Е 3 она удаляется от Юпитера и должно наблюдаться увеличение периода. При движении по участку Е 3 Е 4 Е 1 наблюдаемый период будет меньше истинного. Так как изменение одного периода мало (около 15 с), то эффект обнаруживается только при большом числе наблюдений, проводимых в течение длительного промежутка времени. Если например, наблюдать затмения в течение полугода, начиная с момента противостояния Земли (точка Е 1 ) до момента "соединения" (точка Е 3 ), то промежуток времени между первым и последним затмениями будет на 1320 с больше вычисленного теоретически. Теоретический расчет периода затмений проводился в точках орбиты, близких к противостоянию. Где расстояние между Землей и Юпитером практически не изменяется со временем.

Полученное расхождение можно объяснить только тем, что в течение полугода Земля перешла из точки Е 1 в точку Е 3 и свету приходится в конце полугодия проходить путь, больший, чем в начале, на величину отрезка Е 1 Е 3 , равного диаметру земной орбиты. Таким образом, незаметные для отдельного периода запаздывания накапливаются и образуют результирующее запаздывание. Величина запаздывания, определенная Рёмером, составляла 22 мин. Принимая диаметр орбиты Земли равным км, можно получить для скорости света значение 226000 км/с.

Значение скорости света, определенное на основании измерений Рёмера, оказалось меньше современного значения. Позже были выполнены более точные наблюдения затмений, в которых время запаздывания оказалось равным 16,5 мин, что соответствует скорости света 301000 км/с.

1.2 Метод аберрации света

свет скорость измерение астрономический

Для земного наблюдателя направление луча зрения на звезду будет неодинаковым, если это направление определять в разные времена года, то есть в зависимости от положения Земли на ее орбите. Если направление на какую-либо звезду определять с полугодовыми промежутками, то есть при положениях Земли на противоположных концах диаметра земной орбиты, то угол между полученными двумя направлениями называют годичным параллаксом (рис. .2). Чем дальше находится звезда, тем меньше ее параллактический угол. Измеряя параллактические углы различных звезд, можно определить расстояние этих звезд до нашей планеты.

В 1725-1728 гг. Брэдли (Bradley) Джеймс, английский астроном, измерил годичный параллакс неподвижных звезд. Наблюдая за одной из звезд в созвездии Дракона, он обнаружил, что ее положение менялось в течение года. За это время она описала небольшую окружность, угловые размеры которой были равны 40,9”. В общем случае в результате движения Земли по орбиту звезда описывает эллипс, большая ось которого имеет те же угловые размеры. Для звезд, лежащих в плоскости эклиптики, эллипс вырождается в прямую, а для звезд, лежащих у полюса - в окружность. (Эклиптикой называется большой круг небесной сферы, по которому происходит видимое годичное движение Солнца.)

Величина смещения, измеренная Брэдли, оказалась значительно больше ожидаемого параллактического смещения. Брэдли назвал это явление аберрацией света и объяснил его конечностью скорости света. За то короткое время, в течение которого свет, упавший на объектив телескопа, распространяется от объектива до окуляра, окуляр в результате движения Земли по орбите сдвигается на очень малый отрезок (рис. .3). Вследствие этого изображение звезды сместится на отрезок а . Направляя вновь телескоп на звезду, его придется несколько наклонить в направлении движения Земли, чтобы изображение звезды опять совпало с центром перекрестия нитей в окуляре.

Пусть угол наклона телескопа равен б. Обозначим время, необходимое свету для прохождения отрезка в , равного расстоянию от объектива телескопа до его окуляра, равно ф. Тогда отрезок, и

Из измерений Брэдли было известно, что при двух положениях Земли, лежащих на одном диаметре орбиты, звезда кажется смещенной от истинного положения на один и тот же угол. Угол между этими направлениями наблюдения, откуда, зная скорость Земли на орбите, можно найти скорость света. Брэдли получил с = 306000 км/с.

Следует отметить, что явление аберрации света связано с изменением направления скорости Земли в течение года. Объяснение этого явления базируется на корпускулярных представлениях о свете. Рассмотрение аберрации света с позиций волновой теории более сложно и связано с вопросом о влиянии движения Земли на распространение света.

Рёмером и Брэдли было показано, что скорость света конечна, хотя и имеет огромное значение. Для дальнейшего развития теории света важно было установить, от каких параметров зависит скорость света и как она изменяется при переходе света из одной среды в другую. Для этого необходимо было разработать методы измерения скорости света земных источников. Первые попытки таких экспериментов были предприняты в начале XIX века.

1.3 Метод прерываний (метод Физо)

Первый экспериментальный метод определения скорости света земных источников был разработан в 1449 г. французским физиком Арманом Ипполитом Луи Физо. Схема опыта представлена на рис. .4.

Свет, распространяющийся от источника s , частично отражается от полупрозрачной пластинки Р и направляется к зеркалу М . На пути луча располагается прерыватель света - зубчатое колесо К , ось которого ОО" параллельна лучу. Лучи света проходят через промежутки между зубьями, отражаются зеркалом М и направляются обратно через зубчатое колесо и пластинку Р к наблюдателю.

При медленном вращении колеса К свет, пройдя через промежуток между зубьями, успевает возвратиться через тот же промежуток и попадает в глаз наблюдателя. В те моменты, когда путь лучей пересекается зубцом, свет не попадает к наблюдателю. Таким образом, при малой угловой скорости наблюдатель воспринимает мелькающий свет. Если увеличить скорость вращения колеса, то при некотором значении свет, прошедший через один промежуток между зубьями, дойдя до зеркала и вернувшись обратно, не попадет в тот же самый промежуток d , а будут перекрыт зубцом, занявшим к этому моменту положение промежутка d . Следовательно, при угловой скорости в глаз наблюдателя свет совсем не будет попадать ни от промежутка d , ни от всех последующих (первое затемнение). Если взять число зубцов п , то время поворота колеса на ползубца равно

Время прохождения светом расстояния от колеса до зеркала М и обратно равно

где l - расстояние до колеса от зеркала (база). Приравнивая эти два интервала времени, получаем условие, при котором наступает первое затемнение:

откуда можно определить скорость света:

где - число оборотов в секунду.

В установке Физо база составляла 8,63 км, число зубцов в колесе 720 и первое затемнение наступило при частоте 12,6 об/с. Если увеличить скорость колеса вдвое, то будет наблюдаться просветленное поле зрения, при утроенной скорости вращения опять наступит затемнение и т.д. Вычисленное Физо значение скорости света 313300 км/с.

Основная трудность таких измерений заключается в точном установлении момента затемнения. Точность повышается как при увеличении базы, так и при скоростях прерываний, позволяющих наблюдать затемнения высших порядков. Так, Перротен в 1902 году провел измерения при длине базы 46 км и получил значение скорости света 29987050 км/с. Работа проводилась в условиях чрезвычайно чистого морского воздуха с использованием высококачественной оптики.

Вместо вращающегося колеса можно применять другие, более совершенные методы прерывания света, например, ячейку Керра, с использованием которой можно прерывать световой пучок 107 раз в секунду. При этом можно существенно сократить базу. Так, в установке Андерсона (1941 г.) с ячейкой Керра и фотоэлектрической регистрацией база составляла всего 3 м. Им получено значение с = 29977614 км/с.

1.4 Метод вращающегося зеркала (метод Фуко)

Метод определения скорости света, разработанный в 1862 году Фуко, можно отнести к первым лабораторным методам. Этим методом Фуко измерил скорость света в средах, для которых показатель преломления n >1 .

Схема установки Фуко приведена на рис. 5.

Свет от источника S проходит через полупрозрачную пластинку Р , линзу L и падает на плоское зеркало M 1, которое может вращаться вокруг своей оси О , перпендикулярной к плоскости чертежа. После отражения от зеркала M 1 луч света направляется на неподвижное вогнутое зеркало М 2 , расположенное так, чтобы этот луч всегда падал перпендикулярно к его поверхности и отражался по тому же пути на зеркало M 1 . Если зеркало M 1 неподвижно, то отраженный от него луч возвратится по своему первоначальному пути к пластинке Р , частично отражаясь от которой он даст изображение источника S в точке S 1 .

При вращении зеркала M 1 за время, пока свет проходит путь 2 l между обоими зеркалами и возвращается обратно (), вращающееся с угловой скоростью зеркало M 1 повернется на угол

и займет положение, показанное на рис. .5 пунктиром. Отраженный от зеркала луч по отношению к первоначальному будет повернут на угол и даст изображение источника в точке S 2 . Измерив расстояние S 1 S 2 и зная геометрию установки, можно определить угол и вычислить скорость света:

Таким образом, суть метода Фуко заключается в точном измерении времени прохождения светом расстояния 2 l . Это время оценивается по углу поворота зеркала M 1 , скорость вращения которого известна. Угол поворота определяется на основе измерений смещения S 1 S 2 . В опытах Фуко скорость вращения составляла 800 об/с, база l изменялась от 4 до 20 км. Было найдено значение с = 298000500 км/с.

Фуко на своей установке впервые измерил скорость света в воде. Поместив между зеркалами трубу, наполненную водой, Фуко обнаружил, что угол сдвига возрос в ѕ раза, а следовательно, рассчитанная по записанной выше формуле скорость распространения света в воде оказалась равной (3/4)с . Вычисленный по формулам волновой теории показатель преломления света в воде получился равным, что полностью соответствует закону Снеллиуса. Таким образом, на основе результатов этого эксперимента была подтверждена справедливость волновой теории света, и был закончен полутора вековой спор в ее пользу.

1.5 Метод Майкельсона

В 1926 году установка Майкельсона была выполнена между двумя горными вершинами, так что расстояние, проходимое лучом от источника до его изображения после отражений от первой грани восьмигранной зеркальной призмы, зеркал М 2 - М 7 и пятой грани, составляло около 35,4 км. Скорость вращения призмы (приблизительно 528 об/с) выбиралась такой, чтобы за время распространения света от первой грани до пятой призма успевала повернуться на 1/8 оборота. Возможное смещение зайчика при неточно подобранной скорости играло роль поправки. Скорость света, определенная в этом опыте, оказалась равной 2997964 км/с.

Из других методов отметим выполненное в 1972 году измерение скорости света путем независимого определения длины волны и частоты света. Источником света служил гелий-неоновый лазер, генерирующий излучение 3,39 мкм. При этом длина волны измерялась с помощью интерферометрического сравнения с эталоном длины оранжевого излучения криптона, а частота - с помощью радиотехнических методов. Скорость света

определенная этим методом, составила 299792,45620,001 км/с. Авторы метода считают, что достигнутая точность может быть повышена за счет улучшения воспроизводимости измерений эталонов длины и времени.

В заключение отметим, что при определении скорости света измеряется групповая скорость и , которая лишь для вакуума совпадает с фазовой.

Размещено на Allbest.ru

Подобные документы

    Разделение четырехмерного пространства на физическое время и трехмерное пространство. Постоянство и изотропия скорости света, определение одновременности. Расчет эффекта Саньяка в предположении анизотропии скорости света. Изучение свойств NUT-параметра.

    статья , добавлен 22.06.2015

    Видимое излучение и теплопередача. Естественные, искусственные люминесцирующие и тепловые источники света. Отражение и преломление света. Тень, полутень и световой луч. Лунное и солнечное затмения. Поглощение энергии телами. Изменение скорости света.

    презентация , добавлен 27.12.2011

    Преобразование света при его падении на границу двух сред: отражение (рассеяние), пропускание (преломление), поглощение. Факторы изменения скорости света в веществах. Проявления поляризации и интерференции света. Интенсивность отраженного света.

    презентация , добавлен 26.10.2013

    Развитие представления о пространстве и времени. Парадигма научной фантастики. Принцип относительности и законы сохранения. Абсолютность скорости света. Парадокс замкнутых мировых линий. Замедление хода времени в зависимости от скорости движения.

    реферат , добавлен 10.05.2009

    Понятие дисперсии света. Нормальная и аномальная дисперсии. Классическая теория дисперсии. Зависимость фазовой скорости световых волн от их частоты. Разложение белого света дифракционной решеткой. Различия в дифракционном и призматическом спектрах.

    презентация , добавлен 02.03.2016

    Устройство фотометрической головки. Световой поток и мощность источника света. Определение силы света, яркости. Принцип фотометрии. Сравнение освещенности двух поверхностей, создаваемой исследуемыми источниками света.

    лабораторная работа , добавлен 07.03.2007

    Основные принципы геометрической оптики. Изучение законов распространения световой энергии в прозрачных средах на основе представления о световом луче. Астрономические и лабораторные методы измерения скорости света, рассмотрение законов его преломления.

    презентация , добавлен 07.05.2012

    Спектральные измерения интенсивности света. Исследование рассеяния света в магнитных коллоидах феррита кобальта и магнетита в керосине. Кривые уменьшения интенсивности рассеянного света со временем после выключения электрического и магнитного полей.

    статья , добавлен 19.03.2007

    Теоретические основы оптико-электронных приборов. Химическое действие света. Фотоэлектрический, магнитооптический, электрооптический эффекты света и их применение. Эффект Комптона. Эффект Рамана. Давление света. Химические действия света и его природа.

    реферат , добавлен 02.11.2008

    Волновая теория света и принцип Гюйгенса. Явление интерференции света как пространственного перераспределения энергии света при наложении световых волн. Когерентность и монохроматичных световых потоков. Волновые свойства света и понятие цуга волн.

С обнаружением на эксперименте корпускулярных свойств и проявлений света (фотоэффект, Комптон - эффект и другие явления) была разработана квантовая природа света М.Планком и А.Эйнштейном, в рамках которой свет проявляет как волновые, так и корпускулярные свойства - так называемый, корпускулярно - волновой дуализм. (Макс Карл Эрнст Людвиг Планк - немецкий физик- теоретик, 1858-1947, Нобелевская премия 1918 г. за открытие законов излучения, Артур Хоти Комптон, американский физик, 1892-1962, Нобелевская премия 1927г. за эффект, названный его именем).

Введение 3
1. Эксперименты по определению скорости света. 4
1.1. Первые опыты. 4
1.1.1. Опыт Галилея. 4
1.2 Астрономические способы определения скорости света. 4
1.2.1. Затмение спутника Юпитера - Ио. 4
1.2.2. Аберрация света. 6
1.3. Лабораторные способы измерения скорости света. 7
1.3.1. Метод синхронного детектирования. 7
1.4. Опыты по распространению света в среде. 9
1.4.1. Опыт Армана Физо. 9

1.4.3. Опыты А. Майкельсона и Майкельсона - Морли. 12
1.4.4.Усовершенствование опыта Майкельсона. 13
2. Максимальность скорости света. 14
2.1. Опыт Саде. 14
2.2. Опыт Бертоцци. 15
3. Скорость света в веществе. 17
4. Тахионы. Частицы, движущиеся со скоростями больше скорости света. 17
4.1. Мнимые массы. 17
4.2. Ускорение вместо замедления. 18

5. Сверхсветовая скорость. 20
Заключение 22
Список литературы 23

Работа содержит 1 файл

Курсовая работа на тему:

“Скорость света и методы её определения”

Введение 3

1. Эксперименты по определению скорости света. 4

1.1. Первые опыты. 4

1.1.1. Опыт Галилея. 4

1.2 Астрономические способы определения скорости света. 4

1.2.1. Затмение спутника Юпитера - Ио. 4

1.2.2. Аберрация света. 6

1.3. Лабораторные способы измерения скорости света. 7

1.3.1. Метод синхронного детектирования. 7

1.4. Опыты по распространению света в среде. 9

1.4.1. Опыт Армана Физо. 9

1.4.2. Усовершенствование Фуко. 10

1.4.3. Опыты А. Майкельсона и Майкельсона - Морли. 12

1.4.4.Усовершенствование опыта Майкельсона. 13

2. Максимальность скорости света. 14

2.1. Опыт Саде. 14

2.2. Опыт Бертоцци. 15

3. Скорость света в веществе. 17

4. Тахионы. Частицы, движущиеся со скоростями больше скорости света. 17

4.1. Мнимые массы. 17

4.2. Ускорение вместо замедления. 18

4.3. Отрицательные энергии. 19

5. Сверхсветовая скорость. 20

Заключение 22

Список литературы 23

Введение

О природе света размышляли с древних времен. Древние мыслители считали, что свет это истечение "атомов" от предметов в глаза наблюдателя (Пифагор - около 580 - 500 лет до нашей эры). Тогда же определили прямолинейность распространения света, считалось, что он распространяется с очень большими скоростями, практически мгновенно. В XVI-XVII веках Р.Декарт (Рене Декарт, французский физик, 1596-1650), Р. Гук (Роберт Гук, английский физик, 1635- 1703), X. Гюйгенс (Христиан Гюйгенс, голландский физик, 1629-1695) исходили из того, что распространение света - это распространение волн в среде. Исаак Ньютон (Исаак Ньютон, английский физик, 1643 - 1727) выдвигал корпускулярную природу света, т.е. считал, что свет - это излучение телами определенных частиц и их распространение в пространстве.

В 1801 году Т. Юнг (Томас Юнг, английский физик, 1773-1829) наблюдал интерференцию света, что послужило развитию экспериментов со светом по интерференции и дифракции. И в 1818 году О.Ж. Френель (Огюстен Жан Френель, французский физик, 1788-182 7) возродил волновую теорию распространения света. Д.К. Максвелл после установления общих законов электромагнитного поля пришел к выводу, что свет - это электромагнитные волны. Далее была выдвинута гипотеза "мирового эфира", что свет это распространение электромагнитных волн в среде - "эфире". Знаменитые эксперименты по проверке существования мирового эфира проводились А.А. Майкельсоном и Э.У. Морли (1837-1923 г.г.), а по увлечению света движущейся средой - А.И. Физо. (Альберт Абрахам Майкельсон, американский физик, 1852-1931, Нобелевская премия 1907 г. за создание прецизионные инструменты и выполненные с их помощью спектроскопические и метрологические исследования; Арман Ипполит Луи Физо, французский физик, 1819-1896). В результате было показано, что мирового эфира (по крайней мере, в том понимании, как считали физики в то время - некоторая абсолютная неподвижная среда) не существует.

С обнаружением на эксперименте корпускулярных свойств и проявлений света (фотоэффект, Комптон - эффект и другие явления) была разработана квантовая природа света М.Планком и А.Эйнштейном, в рамках которой свет проявляет как волновые, так и корпускулярные свойства - так называемый, корпускулярно - волновой дуализм. (Макс Карл Эрнст Людвиг Планк - немецкий физик- теоретик, 1858-1947, Нобелевская премия 1918 г. за открытие законов излучения, Артур Хоти Комптон, американский физик, 1892-1962, Нобелевская премия 1927г. за эффект, названный его именем).

Скорость света также пытались измерить различными способами, как в естественных, так и в лабораторных условиях.

1. Эксперименты по определению скорости света.

1.1. Первые опыты.

1.1.1. Опыт Галилея.

Первым, кто попытался измерить скорость света экспериментально, был итальянец Галилео Галилей. Опыт представлял собою следующее: два человека, стоящие на вершинах холмов на расстоянии нескольких километров друг от друга, подавали сигналы с помощью фонарей, снабженных заслонками. Этот опыт, осуществленный впоследствии учеными Флорентийской академии, он высказал в своем труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящиеся к механике и местному движению» (опубликованном в Лейдене в 1638 году).

После опыта Галилей сделал выводы, что скорость света распространяется мгновенно, а если не мгновенно, то с чрезвычайно большой скоростью.

Имевшиеся тогда в распоряжении Галилея средства, конечно, не позволяли так просто решить этот вопрос, и он вполне отдавал себе в этом отчет.

1.2 Астрономические способы определения скорости света.

1.2.1. Затмение спутника Юпитера - Ио.

O.K. Ремер (1676 г., Оле Кристенсен Ремер, голландский астроном, 1644-1710) наблюдал затмение спутника Юпитера (J) - Ио, открытого еще Галилеем в 1610 году (он также открыл еще 3 спутника Юпитера). Радиус орбиты спутника Ио вокруг Юпитера равен 421600 км, диаметр спутника - 3470 км (см рис.2.1 и 2.2). Время затмения составляло = 1.77 суток = 152928 с. O.K. Ремер наблюдал нарушение периодичности затмений, и это явление Ремер связал с конечной скоростью распространения света. Радиус орбиты Юпитера вокруг Солнца Rj значительно больше радиуса орбиты Земли Rз, а период обращения примерно равен 12 лет. То есть за время полуоборота Земли (полгода), Юпитер переместится по орбите на некоторое расстояние и, если фиксировать время прихода светового сигнала с момента появления Ио из тени Юпитера, то свет должен пройти большее расстояние до Земли в случае 2, чем в случае 1 (см рис. 2.2). Пусть - момент времени, когда Ио выходит из тени Юпитера по часам на Земле, а - реальный момент времени, когда это происходит. Тогда имеем:

где - расстояние, которое свет проходит до Земли. В следующий выход Ио мы имеем аналогично:

где - новое расстояние, которое свет проходит до Земли. Истинный период обращения Ио вокруг Юпитера определяется разностью времен:

Конечно, за один промежуток времени, когда происходит одно затмение, трудно определять эти времена с большой точностью. Поэтому удобнее вести наблюдения за полгода, когда расстояние до Земли меняется на максимальную величину. При этом истинный период затмения можно определить как среднюю величину за полгода или год. После этого можно определить скорость света после двух последовательных измерений времени выхода Ио из тени:

Величины находятся из астрономических вычислений. Однако за одно затмение это расстояние меняется мало. Удобнее провести измерения за полгода (когда Земля перейдет на другую сторону своей орбиты) и получить суммарное время затмения:

где п - число затмений за эти полгода. Все остальные промежуточные времена распространения света до Земли сократились, поскольку расстояние меняется слабо за одно затмение. Отсюда Ремер получил скорость света, равную с = 214300 км/с.

1.2.2. Аберрация света.

В астрономии аберрацией называют изменение видимого положения звезды на небесной сфере, то есть отклонение видимого направления на звезду от истинного, вызываемое конечностью скорости света и движением наблюдателя. Суточная аберрация обусловлена вращением Земли; годовая – обращением Земли вокруг Солнца;

вековая – перемещением Солнечной системы в пространстве.

Рис. Аберрация света звезды.

Для понимания этого явления можно провести простую аналогию. Капли дождя, падающие в безветренную погоду вертикально, оставляют на боковом стекле движущегося автомобиля наклонный след.

В результате аберрации света кажущееся направление на звезду отличается от истинного на угол, называемый углом аберрации. Из рисунка видно, что

где - составляющая скорости движения Земли, перпендикулярная направлению на звезду.

Практически явление аберрации (годовой) наблюдается следующим образом. Ось телескопа при каждом наблюдении ориентируется в пространстве одинаковым образом относительно звездного неба, и при этом изображение звезды фиксируется в фокальной плоскости телескопа. Это изображение в течение года описывает эллипс. Зная параметры эллипса и другие данные, отвечающие геометрии опыта, можно вычислить скорость света. В 1727 г. из астрономических наблюдений Дж. Брэдли нашел 2* = 40,9" и получил

с = 303000км/с.

1.3. Лабораторные способы измерения скорости света.

1.3.1. Метод синхронного детектирования.

Для измерения скорости света Арман Физо (1849г.) применил метод синхронного детектирования. Он использовал быстро вращающийся диск с N зубьями (рис. 2.3), представляющие собой непрозрачные сектора. Между этими секторами (зубьями) свет проходил от источника к отражающему зеркалу и обратно к наблюдателю. При этом угол между серединами секторов равен

Угловая скорость вращения подбиралась так, чтобы свет после отражения от зеркала за диском попадал в глаза наблюдателю при прохождении через соседнее отверстие. За время движения света от диска до зеркала и обратно:

поворот диска составляет угол

Зная расстояние L, угловую скорость диска ω и угол △φ, при котором появляется свет, можно получить скорость света. Физо получил значение скорости, равное с=(315300500) км/с. Примерно такими же методами экспериментаторы получали уточненное значение скорости света с = (298000500) км/с (1862 г.), затем с=(2997964)км/с (А. Майкельсон в 1927 и 1932 г.г.). Позже Бергстранд получил - с=(299793.10.3) км/с.

Отметим здесь один из наиболее точных способов измерения скорости света - метод объемного резонатора, основная идея которого состоит в образовании стоячей световой волны и вычислении числа полуволн на длине резонатора. Основные соотношения между скоростью света с, длиной волны λ, периодом Т и частотой ν имеют вид:

Здесь также введена круговая частота, которая есть не что иное, как угловая скорость вращения ω амплитуды, если колебания представить как проекцию вращательного движения на ось. В случае образования световой стоячей волны на длине резонатора укладывается целое число полуволн. Находя это число и пользуясь соотношениями (*), можно определить скорость света.

Последние достижения (1978 г.) дали для скорости света следующее значение с=299792.458 км/с = (299792458 1,2) м/с.

1.4. Опыты по распространению света в среде.

1.4.1. Опыт Армана Физо.

Опыт Армана Физо (1851). Физо рассматривал распространение света в движущейся среде. Для этого пропускал луч света через стоячую и текущую воду и с помощью явления интерференции света сравнивал интерференционные картины, по анализу которых можно было судить об изменении скорости распространения света (см.рисунок 2.4). Два луча света, отразившись от полупрозрачного зеркала (луч 1) и пройдя его (луч 2) проходят дважды через трубу с водой и затем создают интерференционную картину на экране. Сначала измеряют в стоячей воде, а затем в текущей со скоростью V.

При этом один луч (1) движется по течению, а второй (2) - против течения воды. Происходит смещение полос интерференции вследствие изменения разности хода двух лучей. Разность хода лучей измеряется и по ней находится изменение скоростей распространения света. Скорость света в неподвижной среде ĉ зависит от показателя преломления среды п:

По принципу относительности Галилея для наблюдателя, относительно которого свет движется в среде, скорость должна быть равна:

Экспериментально Физо установил, что имеется коэффициент при скорости воды V и поэтому формула выглядит следующим образом:

где * - коэффициент увлечения света движущейся средой:

Таким образом, эксперимент Физо показал, что классическое правило сложения скоростей неприменимо при распространении света в движущейся среде, т.е. свет только частично увлекается движущейся средой. Опыт Физо сыграл важную роль при построении электродинамики движущихся сред.

Он послужил обоснованием СТО, где коэффициент * получается из закона сложения скоростей (если ограничиться первым порядком точности по малой величине ν/c). Вывод, который следует из этого опыта, состоит в том, что классические (Галилеевские) преобразования неприменимы при распространении света.

1.4.2. Усовершенствование Фуко.

Когда Физо объявил о результате своего измерения, ученые усомнились в достоверности этой колоссальной цифры, согласно которой свет доходит от Солнца до Земли за 8 минут и может облететь Землю за восьмую долю секунды. Казалось невероятным, чтобы человек смог измерить столь огромную скорость такими примитивными инструментами. Свет проходит восемь с лишним километров между зеркалами Физо за 1 / 36000 секунды? Невозможно, говорили многие. Однако цифра, полученная Физо, была весьма близка к результату Рёмера. Вряд ли это могло быть простым совпадением.

Тринадцать лет спустя, когда скептики все еще продолжали сомневаться и отпускать иронические замечания, Жан Бернар Леон Фуко, сын парижского издателя, одно время готовившийся стать врачом, определил скорость света несколько иным способом. Он несколько лет проработал вместе с Физо и много размышлял над тем, как усовершенствовать его опыт. Вместо зубчатого колеса Фуко применил вращающееся зеркало.

Рис. 3. Установка Фуко.

После некоторых усовершенствований Майкельсон использовал это устройство для определения скорости света. В этом устройстве зубчатое колесо заменено вращающимся плоским зеркалом C. Если зеркало C неподвижно или очень медленно поворачивается, свет отражается на полупрозрачное зеркало B по направлению, указанному сплошной линией. Когда зеркало быстро вращается, отраженный луч смещается в положение, обозначенное пунктирной линией. Глядя в окуляр, наблюдатель мог измерить смещение луча. Это измерение давало ему удвоенную величину угла α, т.е. угла поворота зеркала за то время, пока луч света шел от C к вогнутому зеркалу A и обратно к C. Зная скорость вращения зеркала C, расстояние от A до C и угол поворота зеркала C за это время, можно было вычислить скорость света.