Магнитное поле корабля. Размагничивание корабля

Размагничивание корабля

искусственное изменение магнитного поля корабля с целью понижения вероятности его подрыва на магнитных и магнитно-индукционных минах. Р. к. достигается с помощью стационарных размагничивающих устройств (РУ), основным элементом которых являются специальные обмотки, монтируемые непосредственно на корабле и предназначенные для компенсации его магнитного поля. Корабли и суда, не имеющие РУ, проходят периодическое размагничивание на стационарных или подвижных станциях безобмоточного размагничивания, где после воздействия размагничивающего внешнего магнитного поля собственное магнитное поле корабля снижается до необходимого уровня.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Размагничивание корабля" в других словарях:

    Уменьшение напряженности магнитного поля корабля для снижения вероятности его подрыва на магнитных и индукционных минах. Различают два вида размагничивания корабля обмоточное (на корабле монтируют в различных плоскостях несколько кабельных… … Морской словарь

    Размагничивание корабля - уменьшение напряжённости магнитного поля корабля для снижения вероятности его подрыва на магнитных и индукционных минах. Различают два вида Р. к. обмоточное (внутри корпуса корабля монтируют кабельные обмотки, по которым пропускается постоянный… … Словарь военных терминов

    Намагниченность судового железа под действием магнитного поля Земли. Является причиной девиации магнитного компаса. На магнетизм корабля реагируют магнитные и индукционные взрыватели морских мин. Для снижения магнетизма корабля применяют… … Морской словарь

    Противоминная защита корабля - комплекс конструктивных мер и технических средств, снижающих степень поражения корабля минным оружием. Включает: конструктивную защиту корабля; технические средства для снижения интенсивности физических полей (уменьшение шумно сти,… … Словарь военных терминов

    Противоминная оборона - совокупность мероприятий по предохранению кораблей от подрыва на морских и речных минах. Основным средством П. о. служит траление мин в сочетании с рядом вспомогательных средств. Из них особое значение имеют: наблюдение, организуемое на… … Краткий словарь оперативно-тактических и общевоенных терминов

    ГОСТ 23612-79: Магнетизм судовой. Термины и определения - Терминология ГОСТ 23612 79: Магнетизм судовой. Термины и определения оригинал документа: 10. Девиация геомагнитного поля на судне Девиация Е. Deviation F. Déviation D. Deviation Отклонение элементов вектора магнитной индукции на судне от… … Словарь-справочник терминов нормативно-технической документации

Размагничивание - это процесс уменьшения намагниченности различных металлических предметов.
Размагничивание требуется в различных областях техники.

__
На производстве при работе с инструментами неудобно пользоваться намагниченными отвёрткой или пинцетом, маленькие гайки и шайбы "прилипают" к инструменту.

При обработке изделий на станках необходимо, чтобы металлическая деталь не перемещалась вслед за движущимися устройствами станков и агрегатов.

Основным способом размагничивания является воздействие на намагниченный предмет переменным магнитным полем с уменьшающейся амплитудой. Иногда размагничивают материалы и с помощью нагрева до определенной высокой температуры.

Корпуса кораблей, технические средства, вооружение, построенные из ферромагнитных материалов, находясь в магнитном поле Земли, намагничиваются.

Намагничивание корабля складывается из:
1) намагничивания , которое приобретается кораблем во время его постройки или длительной стоянки, корабль становится « постоянным магнитом »;
2) намагничивания, которое приобретается кораблем в данный момент времени в зависимости отвеличины и направления магнитного поля Земли. Оно непрерывно изменяется с изменением магнитного поля Земли и исчезает, если магнитное поле Земли в точке нахождения корабля становится равным нулю. Так корабли приобретают собственные магнитные поля.

Постоянное намагничивание снимается на специальных береговых или других мобильных стендах, а намагничивание, полученное же в результате действия магнитного поля Земли компенсируется с помощью размагничивающего устройства, установленного на самом корабле.
___

Корабли с намагниченным корпусом притягивают плавающие металлические предметы, а ими могут стать и морские мины. Компас корабля начинает давать ошибочные показания, принимая магнитное поле корабля за магнитное поле Земли. Поэтому с целью защиты от морских мин и для увеличения точности показаний магнитного компаса как надводные, так и подводные корабли подвергают размагничиванию.
___

Первые неконтактные магнитные мины появились еще в 1919 г. В таких минах железная стрелка поворачивалась под влиянием магнитного поля плывущего неподалеку корабля и замыкала контакты взрывателя. Для таких мин даже не нужно было касания корпуса корабля!
___

В 30-х годах 20-го века наши ученые предложили «размагничивать» корабли.
В 1937 г. в России были проведены первые удачные опыты по размагничиванию судов в Кронштадте.
В 1939 г. осуществлено успешное плавание размагниченного корабля «Выборного» над магнитными минами в Онежском озере.
В 1941 г. произошел переход к стационарному оснащению кораблей размагничивающими установками (токонесущими обмотками, нивелирующими намагниченность корпуса).
___

Во время Великой Отечественной войны большое значение имело размагничивание подводных лодок, которое в обязательном порядке проводилось перед выходом их в море. Каждая лодка имела специальный паспорт, в котором отмечалось состояние ее магнитного поля. Размагничивание спасло от гибели не одну подводную лодку

Принцип размагничивания подводной лодки состоит в следующем. Размагничивающее устройство состоит из нескольких (3 или 4-х) обмоток.




По каждой обмотке пропускается постоянный ток такого направления и такой величины, чтобы создаваемое им магнитное поле было равно и противоположно направлено одной из составляющих магнитного поля лодки.



Знаете ли вы?

Магниты и головной мозг

Физиологи обнаружили, что использование магнитного поля способствует развитию головного мозга у взрослых, стариков и у детей.
Исследователь Фортунато Батталья из университета Нью-Йорка, проведя опыты, обнаружил, что воздействие магнитных полей приводит к росту новых нейронов в областях головного мозга, отведённых под память и обучение. Магнитная стимуляция мозга уже давно используется для лечения депрессии, шизофрении и последствий инсультов, когда магнитные поля возвращают пострадавшим речь. Если новые исследования подтвердятся, то перед врачами откроются новые перспективы лечения различных болезней (например, болезни Альцгеймера, которая сопровождаются массовой гибелью нейронов мозга) и корректировки возрастных изменений памяти.


Любознательным

Белые облака

Почему облака в основном белые, а не голубые, как небо? Почему грозовые тучи черные?

Оказывается...
Рассеяние света на объектах, много меньших длины волны видимого света, описывается рэлеевской моделью рассеяния. Размеры водяных капель в облаке обычно больше, и свет просто отражается от их внешней поверхности. При таком отражении свет не разлагается на составляющие цвета, а остается белым. Очень плотные облака кажутся черными потому, что они пропускают мало солнечного света - он либо поглощается каплями воды в облаке, либо отражается вверх.

Военные моряки смогут одним нажатием кнопки менять индивидуальные электромагнитные портреты кораблей, по которым наводятся современные торпеды и донные мины. Эту возможность им обеспечат суперконденсаторы - устройства, представляющие собой промежуточное звено между аккумуляторными батареями и конденсаторами. Они способны мгновенно накапливать электрический ток и так же быстро его расходовать. Экипажи смогут самостоятельно проводить размагничивание корабля в море в случае опасности и тем самым вводить в заблуждение противника.

Как сообщили «Известиям» в главкомате ВМФ, в России налажено серийное производство суперконденсаторов, которые будут применяться для быстрого размагничивания боевых кораблей, а также для искажения и маскировки их электромагнитного портрета. Новейший комплекс размагничивания уже прошел испытания на большом десантном корабле (БДК) «Иван Грен».

Стандартные накопители энергии, применяемые в ВМФ, имеют высокие удельные мощностные, но низкие удельные энергетические параметры. Системы размагничивания на их основе имеют большую массу, поэтому устанавливаются лишь на специальных судах размагничивания. В отличие от накопителей предыдущего поколения суперконденсаторы - компактные устройства размером с обычный автомобильный аккумулятор, но с их помощью процесс размагничивания можно сделать непрерывным, интегрировав устройство в состав бортового оборудования.

Суперконденсаторы для ВМФ разработаны компанией ТЭЭМП. Изделия имеют удельную мощность в 100 кВт/кг и могут работать даже при экстремальных температурах. Суперконденсатор обладает миллионным числом циклов заряд–разряд, что позволяет интегрировать его в состав любого бортового оборудования автомобиля, самолета или корабля.

Эксперт в области военно-морских вооружений Александр Мозговой рассказал «Известиям», что стандартные процедуры размагничивания корабля долгие и утомительные. Сейчас их проводят исключительно на территории военно-морских баз.

У корабля есть не только свой уникальный акустический портрет, но и электромагнитный. Существуют магнитные мины, торпеды и даже ракеты с магнитными головками наведения, - пояснил эксперт. - Размагничивание необходимо, но это большая проблема. Помнится, на БДК «Иван Грен» пришлось из-за этого даже всю проводку менять.

По словам эксперта, новые технологии сильно упрощают процесс размагничивания, поскольку всё делается одним нажатием на кнопку. Морякам будет меньше работы, а процесс подготовки к выходу на боевую службу значительно ускорится. Такая система также постоянно контролирует состояние электромагнитного поля корабля во время плавания.

Американцы уже установили похожую систему на свои новейшие эсминцы типа «Зумвальт», - отметил Александр Мозговой.

Размагничивание корабля - обязательная процедура перед каждым выходом в море. Она включает в себя обмотку корпуса электрическим кабелем. По нему в течение нескольких суток подается ток, генерирующийся через электролитические конденсаторы, которые выдают переменные магнитные импульсы. Они снимают собственное электромагнитное поле корабля. Тем самым улучшается работа навигационных комплексов, а заодно повышается защищенность корабля от высокоточных систем оружия.

ПОДРОБНЕЕ ПО ТЕМЕ

Александр Сергеевич Суворов

О службе на флоте. Легендарный БПК «Свирепый».

Сводка погоды: Калининград среда 09 августа 1972, дневная температура: мин.: 14.8°C тепла, средняя: 21.0°C тепла, макс.: 28.7°C тепла, без осадков; четверг 10 августа 1972, дневная температура: мин.: 13.8°C тепла, средняя: 19.5°C тепла, макс.: 25.2°C тепла, без осадков; пятница 11 августа 1972, дневная температура: мин.: 16.4°C тепла, средняя: 20.7°C тепла, макс.: 25.7°C тепла, без осадков.

Этап швартовных испытаний БПК "Свирепый" завершился 09 августа 1972 года, когда нас отбуксировали на рейд СБР (стенд безобмоточного размагничивания) Калининградского ПССЗ "Янтарь" (это совсем рядом от места стоянки БПК "Свирепый", "справа за углом" заводской достроечной стенки, напротив нефтеналивной базы на том берегу морского канала - автор).

Размагничивание корабля - это процесс искусственного уменьшения его магнитного поля. Магнитное поле корабля - это физическое поле, то есть область пространства, прилегающая к корпусу корабля, в котором проявляются физические свойства корабля как материального объекта. Основные виды физических полей корабля: гравитационное, акустическое, тепловое (инфракрасное), гидродинамическое, электромагнитное, магнитное и электрическое поле корабля. Физические поля корабля взаимодействуют с соответствующим физическим полем Мирового океана и прилегающего воздушного пространства, поэтому оставляют след и могут быть обнаружены на расстоянии чуткими приборами.

Размагничивание производят с помощью обмоток контуров, питаемых током, и называют электромагнитной обработкой (ЭМО) корабля, при этом создаётся определённым образом магнитное поле, обратное по знаку магнитному полю корабля. Зависимость направления магнитного поля, то есть положения его полюсов от направления тока определяется известным правилом "буравчика". Размагничивание производится двумя различными методами – безобмоточным и обмоточным, но эти названия условные, так как размагничивание кораблей как одним, так и другим методом выполняют с помощью обмоток, питаемых током. Правда, в первом случае, обмотки накладывают на корпус судна временно, лишь на период размагничивания, или же вообще располагают вне судна, а по второму способу размагничивания обмотки устанавливают стационарно в корпусе корабля при его изготовлении и включают их на время следования по опасным районам.

Безобмоточное размагничивание (БР) осуществляется путём воздействия на корабль временно создаваемых магнитных полей двумя способами: с помощью временно накладываемых на корабль электрических обмоток и с помощью контуров, обтекаемых током, уложенных на грунте, на дне специальных акваторий - полигонов БР. При безобмоточном размагничивании (БР) корпус корабля подвергается воздействию затухающего переменного и постоянного магнитных полей, либо кратковременному воздействию только постоянного магнитного поля.

Когда изготавливали БПК "Свирепый", то его металлический (стальной) корпус неизбежно намагничивался, приобретал свои собственные физические поля, причём, в вертикальном, продольном и поперечном направлении, поэтому и размагничивать его нужно в этих же направлениях. При продольном размагничивании весь корпус корабля параллельно ватерлинии окружается кабелем, по которому пропускается ток такой величины, чтобы созданное электромагнитное поле обратного знака превышало собственное магнитное поле корпуса корабля в 2-3 раза. Через несколько секунд ток в обмотке выключается и происходит «опрокидывание» магнитного поля корабля. После этого проводится "операция компенсации", то есть опять в обмотку включается ток, величина и направление которого выбираются так, чтобы после выключения его магнитное поле корабля возможно больше приближалось к нулю. Таким образом, магнитное поле корабля не будет воздействовать на детонаторы вражеских магнитных мин и магнитных торпед...

Для создания как постоянного, так и переменного магнитных полей на корабль накладываются временно один или несколько витков кабелей, подключаемых к источникам питания специальных судов размагничивания. При продольном размагничивании корабль по всей длине обматывается несколькими витками кабелей, как катушка, и корабль оказывается заключенным внутри огромного соленоида. При подачи тока в эту обмотку-селеноид возникает объёмное магнитное поле, действующее по оси соленоида, которое размагничивает корабль. При поперечном размагничивании на корабль накладываются в вертикальной плоскости два последовательно соединенных витка кабелей по бортам. В результате по всем направлениям добиваются нулевых значений измерений магнитного поля корабля.

Заводить и обматывать корабль вдоль и вокруг корпуса тяжелыми многожильными медными кабелями в толстой изоляции - это очень тяжёлый труд, на который уходит много сил и времени, но это крайне необходимо, так как обеспечивает безопасность кораблю и точность навигации - определения местоположения корабля в окружающем пространстве Земли. Поэтому одновременно с обмоткой корабля кабелем осуществляется безобмоточное размагничивание на специальной станции, на которой обмотки (кабель) уложены определённым образом на грунте акватории завода-изготовителя корабля.

Контуры кабелей СБР (станции безобмоточного размагничивания), уложенные на грунте, имеют форму петли. Поэтому такие станции ещё называют "петлевые станции безобмоточного размагничивания" (ПСБР). Акватория ПСБР ограждается буями или вехами и здесь имеются бочки для швартовки кораблей и судов. Через первый контур пропускают постоянный ток, а через второй - переменный ток частотой 1 Гц. Переменное магнитное поле устраняет все необратимые явления, возникающие при намагничивании в постоянном магнитном поле контура постоянного тока. Размагничивания на ПСБР осуществляется путём пропускания соответствующих токов по контурам (донным кабелям) в тот момент, когда корабль стоит над ними. Управление режимом тока и снятие показаний магнитометрической аппаратуры осуществляется дистанционно с берегового пульта.

Данный вид размагничивания БПК "Свирепый" получит в декабре 1972 года в уникальном месте - на I Полигоне ВМФ СССР в заливе Хара-Лахт (посёлке Суурпеа Эстонской ССР) на уникальных стендах:
- ИК-2М для магнитной обработки кораблей;
- база «Ока» - подъемно-опускное устройство для измерения гидроакустического поля;
- стенд «Пилон» - 28-метровая ферма, размещенная под водой, с установленными на ней датчиками гидродинамического давления и датчиками, определяющими гидрологию моря;
- глубоководный гидроакустический стенд, удаленный от основной акватории полигона на 80 км и т. д.

В четверг 10 августа 1972 года экипажу БПК "Свирепый" предложили сложить в коробки все свои наручные часы, мы, штурманцы БЧ-1, сняли все корабельные часы со всех переборок во всех помещениях и всё это унесли под охраной на берег. Перед этим, в среду, воспользовавшись хорошей ясной погодой, корабль был полностью обмотан кабелями для размагничивания, и особо храбрые матросы остались на корабле "загорать в сильном магнитном поле", чтобы получить либо "заряд сексуальной бодрости", либо "сексуальное успокоение". Процесс размагничивания БПК "Свирепый" шёл по принципу " гистерезисного или полугистерезисного перемагничивания" и эти слова действовали на моряков завораживающе, магически, магнетически. Некоторые утверждали, что ощутили прилив сил и "мужской энергии".

На самом деле электромагнитное поле безобмоточного размагничивания действует только на корпус корабля, при этом не компенсируются курсовые и широтные изменения поля корабля, поэтому возникает необходимость периодически повторять магнитную обработку ввиду недостаточной стабильности результирующего поля и после каждого размагничивания необходимо производить определение и устранение девиации (погрешности) магнитных компасов. Так что нам, штурманам, забот и хлопот 09-10 августа 1972 года хватало...

Кроме этого лично мне пришлось участвовать в так называемом "обмоточном размагничивании", то есть в производстве компенсации магнитных полей корабля полями от стационарных обмоток, питаемых током от специальных источников. Совокупность системы обмоток, источников питания, а также аппаратуры управления и контроля составляет размагничивающее устройство (РУ) корабля. РУ создаёт магнитное поле в любой момент времени как "зеркальное отображение" собственного магнитного поля корабля, при этом в каждой точке под кораблем создаваемое магнитное поле равно полю корабля по величине, но противоположно по знаку. Таким образом, результирующее магнитное поле имеет почти нулевые значения (корабль становится почти "невидимым" для магнитных мин - автор). Кстати впервые РУ разработаны ещё во время Великой Отечественной войны 1941-1945 годов группой сотрудников ЛФТИ АН СССР во главе с академиком А. П. Александровым (И. В. Курчатов, Л. Р. Степанов К. К. Щербо и др.). Размагничивающее устройство (РУ) позволяет компенсировать магнитное поле корабля с учетом курсовых и широтных изменений.

Обмотки РУ установлены внутри корабля в продольном, поперечном и вертикальном направлениях, а направление тока в обмотках подбирают так, чтобы магнитное поле было противоположно собственному полю корабля полю в этих направлениях. Вот эти-то обмотки, спрятанные в специальных кожухах внутри помещений в носу и в корме, по расположению шпангоутов и по бортам (батоксовые постоянные обмотки) я и проверял. Для компенсации разнонаправленного магнитного поля достаточно задать в обмотках определенный и одинаковый режим тока, но сложнее компенсировать индуктивные составляющие намагничивания. Для компенсации этих составляющих магнитного поля корабля в РУ (размагничивающее устройство) входят регулируемые обмотки: широтная, курсовые шпангоутные обмотки и батоксовые курсовые обмотки.

РУ обмоточного размагничивания требует много энергии, стоит больших средств и усилий для создания, дефицитных материалов, но обеспечивает большую степень защиты кораблей от неконтактного магнитного оружия и большую скрытность корабля в физических полях Мирового океана.

Таким образом, - рассказывал я ребятам во время посещения боевых постов и внутренних помещений для ревизии обмоток корабельного РУ (размагничивающего устройства), - за этими металлическими кожухами располагаются простые молчаливые толстые медные кабели, защищающие нас от магнитных мин и торпед, делающие нас невидимыми в магнитных полях, дающие возможность точно определять наше местоположение, местоположение (координаты) целей, а значит точнее стрелять, поразить врага и остаться живыми. Берегите эти защитные кожухи и берегите аппаратуру РУ, потому что они здесь не просто так, для красоты или помехи, а для самозащиты корабля, то есть нас всех.

Я честно "не травил военно-морскую байку о РУ" (размагничивающем устройстве), я говорил правду. Практически все матросы и старшины, годки, подгодки и молодые матросы с уважением и со вниманием смотрели на то, что я делал и слушали, что я говорил им обычным усталым и деловым тоном. Все отнеслись к размагничиванию нашего корабля с пониманием, вот почему участие нашего экипажа в укладке и обмотке корпуса корабля тяжеленными и маркими кабелями все мы восприняли, как аврал, как состязание, как своеобразный героизм. В этой авральной работе участвовали буквально все: офицеры, мичманы, годки, подгодки, молодые, прикомандированные и вновь прибывшие "салаги". Это было наше последнее "дело" в Программе швартовных испытаний перед получением первого в истории БПК "Свирепый" Военно-Морского флага, открывающего нам путь в море...

Ещё в середине июля 1972 года специальная комиссия представителей всех сдатчиков, военпредов и заказчиков от ВМФ определилась с датой выхода на заводские ходовые испытания БПК «Свирепый» - 12-13 августа 1972 года, на этот срок была назначена дата подъёма на корабле Военно-Морского флага.

В период с 09-11.08.1972 года БПК «Свирепый» проходил первое безобмоточное размагничивание на заводском рейде СБР, которое обеспечивало судно размагничивания Балтийского флота (возможно, СР-570 – автор). Под руководством опытных работников и матросов специального судна СР-570, мы разматывали с огромных катушек специальные тяжёлые кабель-тросы в чёрной липкой и маркой резиновой изоляции, цепляли их, наращивая длину, и заводили под корпусом нашего корабля, поднимая эти кабель-тросы на надстройки и даже на нашу фок-мачту и реи. В результате, корпус корабля оказался полностью обмотан кабель-тросами и превратился в сердечник электромагнита - селеноида.

На БПК «Свирепом» ещё не совсем закончились разные работы по доводке машин и механизмов, установка новых приборов, поэтому на корабле присутствовали многочисленные специалисты разных заводов, приехали из Ленинграда конструкторы и проектанты корабля, инженеры-наладчики и учёные из военных институтов. Все были в хорошем праздничном настроении и восприняли время, предназначенное для размагничивания корабля (в течение нескольких дней), как своеобразный «отпуск». Матросы экипажа БПК «Свирепый» тоже, невзирая на невидимые магнитные поля, с удовольствием загорали на «крыше» ГКП и ходовой рубки во время проведения работ по размагничиванию, что и подтверждает фотоиллюстрация из ДМБовского альбома радиотелеграфиста Казённова Юрия Васильевича, период его службы 16.11.1970 - 11.1973. На переднем плане снимка Червяков Александр Николаевич, период службы 19.11.1970 - 11.1973, за ним с чапаевскими усами командир отделения механиков БП ЗАС Морозов Николай Николаевич, период службы 19.11.1970 - 11.1973, а за ним возвышается радиотелеграфист Аносов Борис Алексеевич, период службы 16.11.1970-11.1973 (все из БЧ-4). По бокам от ребят видны двойные кабель-тросы для размагничивания.

Обмоточное размагничивание БПК «Свирепый» на заводском стенде СБР с помощью специального судна, возможно, СР-570, было последним событием перед первым торжественным подъёмом Военно-Морского флага ВМФ СССР, потому что 10 августа 1972 года Командующий Балтийским флотом, адмирал В.В. Михайлин издал приказ №0432 о зачислении новостроящегося БПК «Свирепый» в списки боевых надводных кораблей Дважды Краснознамённого Балтийского флота.

Что значило для нас, экипажа БПК «Свирепый», издание командующим Балтийским флотом такого приказа и поднятие Военно-морского флага? Первое, - это, конечно, гордость за то, что мы досрочно справились с большими задачами, приняли и первично освоили корабль, подготовились к заводским ходовым испытаниям. Второе, - это повышение денежного содержания и норм питания с «сухопутных» (общевойсковых норм), до «морских» (флотских). Третье, - начало настоящих морских испытаний и приключений, потому что наш корабль должен был впервые дать ход, пройти узостями по калининградскому Морскому каналу из акватории родного Калининградского Прибалтийского судостроительного завода «Янтарь» в Балтийскую военно-морскую базу Балтийск и встать там к причальной стенке – на своё законное место.

Фотоиллюстрация из ДМБовского альбома Юрия Казённова: 10 августа 1972 года. Калининград. Калининградский Прибалтийский судостроительный завод "Янтарь". Заводской рейд СБР, где в период с 09 по 11 августа 1972 года БПК «Свирепый» проходил безобмоточное размагничивание. На переднем плане снимка радиотелеграфист Червяков Александр Николаевич, период службы 19.11.1970-11.1973, за ним с чапаевскими усами командир отделения механиков БП ЗАС Морозов Николай Николаевич, период службы 19.11.1970 - 11.1973, а за ним возвышается радиотелеграфист Аносов Борис Алексеевич, период службы 16.11.1970 - 11.1973 (все из БЧ-4). По бокам от ребят видны двойные кабель-тросы обмотки размагничивания. Сверху на фоне берега виден корабельный измеритель ветра (КИВ) – моё (автора) заведование как рулевого БЧ-1.
В новелле использованы данные из статьи авторов Зингер М.А., Захаров И.В. Применение инновационных технологий в военном кораблестроении // Актуальные вопросы технических наук: материалы IV Междунар. науч. конф. (г. Краснодар, февраль 2017 г.). - Краснодар: Новация, 2017. - С. 13-17.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Соде р жание

Введение

1. Понятие о конструктивной защите и физических полях корабля

2. Основные физические поля корабля и способы их снижения

3. Размагничивающее устройство корабля

Заключение

Введение

физический поле корабль

В целях более успешного решения кораблем своих боевых задач в условиях интенсивного развития средств обнаружения и поражения, необходимо всему офицерскому составу знать физические поля корабля и Мирового океана, способы обеспечения физической защиты, уметь грамотно использовать технические средства защиты и режимы движения корабля, а также необходимо обратить серьезное внимание на выбор грамотных тактических приемов для обеспечения скрытности корабля и уменьшения вероятности обнаружения и поражения неконтактным оружием.

При проектировании и постройке кораблей различных классов уделяется большое внимание обеспечению их конструктивной защиты от воздействия различных видов оружия и средств наведения.

1. Понятие о конструктивной защите и физических полях к о рабля

С началом ведения боевых действий на море началось противостояние оружия, применяемого для уничтожения кораблей и защиты корабля от этого оружия.

Так в период, когда основным оружием был таран начали применять бронирование бортов корабля. С началом применения артиллерии значительное внимание наряду с бронированием уделялось пожарозащищенности кораблей. В этот период появились первые противопожарные системы.

Бронирование кораблей, как основной вид защиты широко применялся на кораблях вплоть до начала 20 века. В этот период существовал класс броненосных кораблей - броненосцев. Кроме того, другие корабли строились также с применением бронирования. Представителем этих кораблей является знаменитый крейсер "АВРОРА" построенный в этот период. Корпус данного корабля состоит из двух частей: тяжелой бронированной подводной части и легкой надводной.

С увеличением мощи артиллерийского оружия и появлением торпедного оружия бронирование перестало удовлетворять требованиям защиты корабля. Поэтому применение бронирования стало не целесообразным.

В этот период начинается бурное развитие основных положений живучести корабля, основоположником которых стал русский офицер, адмирал С.О. Макаров.

Применение принципа разделения корабля на герметичные, водонепроницаемые отсеки, широкое использование водоотливных и противопожарных средств, аварийно-спасательного имущества и материалов, а также научные подходы к организации борьбы за живучесть корабля, все это позволило кораблю эффективно противостоять боевому воздействию оружия того времени.

С началом применения неконтактных взрывателей и возникновением систем самонаведения основным направлением защиты кораблей стала защита по физическим полям. Данный вид защиты в настоящее время продолжает развиваться и совершенствоваться, а с появлением мощного ракетного оружия необходимость обеспечения защиты корабля еще более возросла.

На современных кораблях конструктивная защита обеспечивается проведением следующих мероприятий:

Придание кораблю необходимых запасов местной и общей прочности;

Деление корабля на водонепроницаемые отсеки;

Применение технических средств борьбы с водой и пожарами;

Обеспечение снижения уровня различных физических полей.

В настоящее время для обнаружения кораблей, их классификации, слежения за ними, а также их уничтожения используются различные неконтактные системы, основанные на принципах регистрации различных физических полей корабля. С началом применения неконтактных взрывателей и возникновением систем самонаведения основным направлением защиты кораблей стала защита по физическим полям.

Физическим полем называется часть пространства или все пространство, которому присущи некоторые физические свойства. В каждой точке этого пространства некоторая физическая величина имеет определенное значение.

К полям, как своеобразным формам материи можно отнести магнитное, тепловое (инфракрасное), световое, гравитационное и другие поля.

Некоторые физические поля являются своеобразными формами движения вещества, как, например акустическое поле. А некоторые поля проявляются в виде электромагнитных и гравитационных явлений в совокупности с движением вещества, как, например гидродинамическое поле.

Каждому месту Мирового океана присущи определенные уровни физических полей - это естественные природные поля. В зависимости от среды в которой зарождаются физические поля океана, их можно разделить на:

1. Геофизические поля , обусловленные наличием всей массы земли:

Магнитное поле;

Гравитационное поле;

Электрическое поле; поле рельефа океана.

2. Гидрофизические поля , обусловленные наличием водных масс океана, к которым относятся:

Поле температуры морской воды;

Поле солености морской воды;

Поле радиоактивности морской воды;

Гидродинамическое поле;

Гидроакустическое поле;

Гидрооптическое поле;

поле теплового излучения поверхности океана.

При создании технических средств обнаружения кораблей и неконтактных систем оружия тщательно учитываются характеристики и параметры полей океана, они рассматриваются как естественная помеха, с учетом которой средства должны быть настроены так, чтобы выделить на фоне естественной помехи физическое поле корабля. С другой стороны, корабли могут использовать поля океана в целях маскировки или уменьшения уровней собственных полей.

Корабль (ПЛ) при нахождении в данном месте мирового океана вносит изменения в естественные поля. Он искажает (возмущает) то или иное поле Мирового океана с определенной закономерностью и сам в некоторых случаях подвергается воздействию физических полей, например, намагничивается.

Физическим полем корабля называется область пространства, прилегающая к кораблю, в пределах которой обнаруживается искажение соответствующего поля Мирового океана.

Надводный корабль является источником различных физических полей, которые являются характеристиками корабля, определяющими его скрытность, защиту и боевую устойчивость.

Параметры физических полей широко используются при обнаружении и классификации кораблей, в системах наведения оружия, а также в системах управления неконтактным минно-торпедным и ракетным оружием.

В настоящее время еще не установлена строгая классификация и терминология по физическим полям и следности корабля. Одним из вариантов является классификация, представленная на таблице №1.

Физические поля кораблей по месту расположения источников поля подразделяют на первичные (собственные) и вторичные (вызванные).

Первичными (собственными) полями кораблей называются поля, источники которых расположены непосредственно на корабле либо в сравнительно тонком слое воды, прилегающем к его корпусу.

Вторичным (вызванным), полем корабля, называется отраженное (искаженное) поле корабля, источники которого находятся вне корабля (в пространстве, на другом корабле и т.д.).

Поля, которые создаются искусственно с помощью специальных устройств, (радио-, гидролокационных станций, оптических приборов) называются активными физическими пол я ми.

Поля, которые создаются естественно кораблем в целом как конструктивным сооружением, называются пассивными физическими полями корабля .

По функциональной зависимости параметров физических полей от времени их можно подразделить на статические и динамические.

Статическими полями являются такие физические поля, интенсивность (уровень или мощность) источников которых остается в течении времени воздействия полей на неконтактную систему постоянной.

Динамическими (переменными во времени) физическими полями называются такие поля, интенсивность источников которых изменяется в течении времени воздействия поля на неконтактную систему.

Физические поля корабля в настоящее время широко используются по трем направлениям:

В неконтактных системах различных видов оружия;

В системах обнаружения и классификации;

В системах самонаведения.

Степень использования физических полей в технических средствах обнаружения, слежения за кораблями и в неконтактных системах оружия неодинакова. В настоящее время нашли широкое применение в практике следующие физические поля корабля:

акустическое поле,

тепловое (инфракрасное) поле,

гидродинамическое поле,

магнитное поле,

электрическое поле.

Причины возникновения и способы снижения этих физических полей корабля рассмотрим в следующих вопросах занятия.

2. Основные физические поля корабля и способы их сн и жения

а) Акустическое поле корабля.

Акустическим полем корабля называется область пространства, в которой распределяются акустические волны, образованные или собственно кораблем или отражающиеся от корабля.

Волнообразно распространяющееся колебательное движение частиц упругой среды принято называть звуком.

Скорость распространения звука зависит от упругих свойств среды (в воздухе 330 м/сек, в воде 1500 м/сек, в стали около 5000 м/сек). Скорость распространения звука в воде зависит, кроме того, от ее физического состояния, увеличиваясь с повышением температуры, солености и гидростатического давления.

Движущийся корабль является мощным источником звука, создающим в воде акустическое поле большой интенсивности. Это поле называют гидроакустическим полем корабля (ГАПК).

В соответствии с классификацией, рассмотренной ранее, ГАПК подразделяется на:

Первичное ГАПК (шумность), которое формируется кораблем собственным источником акустических волн;

Вторичное ГАПК (гидролакационное), которое формируется в следствии отражающихся от корабля акустических волн, излучаемых посторонним источником.

Гидроакустическое поле (шумность) корабля широко используется в стационарных, корабельных и авиационных системах обнаружения и классификации, а также системах самонаведения и неконтактных взрывателях минно-торпедного оружия.

Гидроакустическое поле корабля представляет собой совокупность наложенных друг на друга полей, создаваемых различными источниками, основными из которых являются:

Шумы, создаваемые движителями (винтами) при их вращении. Подводный шум корабля от работ гребных винтов разделяется на следующие составляющие:

Шум вращение гребного винта,

Вихревой шум,

Шум вибрации кромок лопастей винтов («пение»),

Кавитационный шум.

Шумы, излучаемые корпусом корабля на ходу и на стоянке как результат его вибрации от работы механизмов.

Шумы, создаваемые обтеканием корпуса корабля водой при его движении.

Уровни подводного шума зависят от скорости хода корабля и от глубины погружения (для ПЛ). На скоростях хода выше критической начинается область интенсивного шумообразования.

В процессе эксплуатации корабля шумность его по ряду причин может измениться. Так увеличению шумности способствует выработка технического ресурса корабельных механизмов, что приводит к их расцентровки, расбалансировки и увеличению вибрации. Колебательная энергия механизмов вызывает вибрации корпуса, что приводит к возмущениям в забортной среде, определяющим подводный шум.

Вибрации механизмов передаются на корпус:

Через опорные связи механизмов с корпусом (фундаменты);

Через неопорные связи механизмов с корпусом (трубопроводы, водопроводы, кабели);

Через воздух в отсеках и помещениях НК.

Насосы, связанные с забортной средой, передают колебательную энергию кроме указанных путей по рабочей среде трубопровода непосредственно в воду.

Шумность корабля характеризует не только его скрытность от гидроакустических средств обнаружения и степень защиты от минно-торпедного оружия вероятного противника, но и определяет условия работы собственных гидроакустических средств обнаружения и целеуказания, создавая помехи работе этих средств.

Шумность имеет большое значение для подводных лодок (ПЛ) так как она во многом определяет их скрытность. Контроль за шумностью и ее снижение является важнейшей задачей всего личного состава корабля и особенно ПЛ.

В целях обеспечения акустической защиты корабля проводится ряд организационно-технических и тактических мероприятий.

К данным мероприятиям относятся следующие:

улучшение виброакустических характеристик механизмов;

удаление механизмов от конструкций наружного корпуса, излучающего подводный шум, путём их установки на палубы, платформы и переборки;

виброизоляция механизмов и систем от основного корпуса с помощью звукоизолирующих амортизаторов, гибких вставок, муфт, амортизирующих подвесок трубопроводов и специальных шумозащищающих фундаментов;

вибропоглащение и звукоизоляция звуковых вибраций фундаментных и корпусных конструкций, систем трубопроводов с помощью звукоизолирующих и вибродемфирующих покрытий;

звукоизоляция и звукопоглащение воздушного шума механизмов за счет применения покрытий, кожухов, экранов, глушителей в воздуховодах;

применение в системах забортной воды глушителей гидродинамического шума.

Кавитационный шум снижается выполнением следующих мероприятий:

применение малошумных гребных винтов;

применение низкооборотных винтов;

увеличение числа лопастей;

балансировка гребного винта и линии вала.

Совокупность конструктивных мероприятий и действий личного состава направленных на снижение шумности, позволяют в значительной степени снизить уровень гидроакустического поля корабля.

б) Тепловое поле корабля.

Основными источниками теплового поля корабля (инфракрасного излучения) являются:

Поверхности надводной части корпуса, надстроек, палуб, кожухов дымовых труб;

Поверхности газоходов и газовыхлопных устройств отработавших газов;

Газовый факел;

Поверхности корабельных конструкций (мачт, антенн, палуб и т.д.), находящихся в зоне действия газового факела, газовых струй ракет и летательных аппаратов при запуске;

Бурун и кильваторный след корабля.

Обнаружение надводных кораблей и подводных лодок по их тепловому полю, и выдача целеуказания оружию производится с помощью теплопеленгаторной аппаратуры. Такая аппаратура устанавливается на самолетах, спутниках, надводных кораблях и подводных лодках, береговых постах.

Тепловыми (инфракрасными) устройствами самонаведения снабжаются также различные типы ракет и торпеды. Современные тепловые устройства самонаведения обеспечивают захват целей на расстоянии до 30 км.

Наиболее эффективным способом снижения теплового поля корабля является применение технических средств тепловой защиты.

К техническим средствам тепловой защиты относятся:

охладители отработавших газов корабельной энергетической установки (камера смешения, внешний кожух, жалюзийные окна приёма воздуха, насадки, системы водовпрыска и т.д.);

теплоутилизационные контуры (ТУК) корабельной энергетической установки;

бортовые (надводные и подводные) и кормовые газовыхлопные устройства;

экраны инфракрасного излучения от внутренних и наружных поверхностей газоходов (двухслойные экраны, профильные экраны с водяным или воздушным охлаждением, экранирующие тела и т.д.);

система универсальной водяной защиты;

покрытия для корпуса и надстроек корабля, в том числе и лакокрасочные, с пониженной излучающей способностью;

тепловая изоляция высокотемпературных корабельных помещений.

Тепловую заметность надводного корабля можно также уменьшить применением тактических приемов. К таким приемам относятся следующие:

использование маскирующего воздействия тумана, дождя и снега;

использование в качестве фона предметов и явлений с мощным инфракрасным излучением;

использование носовых курсовых углов по отношению к носителю теплопеленгаторной аппаратуры.

Тепловая заметность подводных лодок уменьшается при увеличении глубины их погружения.

в) Гидродинамическое поле корабля.

Гидродинамическим полем корабля (ГПК) называется область пространства, прилегающая к кораблю, в которой наблюдается изменение гидростатического давления, вызываемое движением корабля.

По физической сущности ГПК это возмущение движущимся кораблем естественного гидродинамического поля Мирового океана.

Если в каждом месте Мирового океана параметры его гидродинамического поля обусловлены в наибольшей степени случайными явлениями, учесть которые заранее очень трудно, то движущийся корабль вносит не случайные, а вполне закономерные изменения в эти параметры, учесть которые можно с необходимой для практики точностью.

При движении корабля в воде частицы жидкости, расположенные на определенных расстояниях от его корпуса, приходят в состояние возмущенного движения. При движении этих частиц меняется величина гидростатического давления в месте движения корабля, образуется гидродинамическое поле корабля определенных параметров.

При движении ПЛ под водой область изменения давления распространяется на поверхность воды так же, как и на грунт. Если движение осуществляется на небольших глубинах погружения, то на поверхности воды появляется визуально хорошо заметный волновой гидродинамический след.

Таким образом, гидродинамическое поле корабля создается при его движении относительно окружающей жидкости и зависит от водоизмещения, главных размерений, формы корпуса, скорости корабля, а также от глубины моря (расстояние до днища корабля).

Гидродинамическое поле корабля (ГПК) широко используется в неконтактных гидродинамических взрывателях донных мин.

Обеспечить гидродинамическую защиту корабля любого типа или существенным образом снизить параметры ГПК с помощью конструктивных средств очень трудно. Для этого необходимо создавать сложную форму корпуса, что приведет к увеличению сопротивления движению. Поэтому решение вопроса гидродинамической защиты осуществляется в основном организационными мероприятиями.

Для обеспечения гидродинамической защиты любого корабля необходимо и достаточно, чтобы параметры его ГПК по величине не превосходили параметров настройки неконтактного гидродинамического взрывателя.

Уровни гидродинамического поля уменьшаются при уменьшении скорости корабля. Снижение скорости корабля до безопасной является основным способом защиты кораблей от гидродинамических мин.

Графики безопасных скоростей корабля и правила пользования ими даются в инструкции по выбору безопасных скоростей корабля при плавании в районах возможной постановки гидродинамических мин.

Наряду с эксплуатационными физическими полями корабля, существуют также поля зависящие практически только от физических и химических свойств материалов из которых построен корабль. К таким физическим полям корабля относятся магнитное и электрическое поле.

г) Электрическое поле корабля.

Следующим физическим полем корабля является электрическое поле. Из курса физики известно, что если в какой-либо точке пространства появляется электрический заряд, то вокруг этого заряда возникает электрическое поле.

Электрическим полем корабля (ЭПК) называют область пространства, в которой протекают постоянные электрические токи.

Основными причинами образования электрического поля корабля являются:

1. Электрохимические процессы между деталями, изготовленными из разнородных металлов и находящимися в подводной части корабля (гребные винты и валы, рулевые устройства, донно-забортная арматура, системы протекторной и катодной защиты корпуса и т.д.).

2. Процессы, обусловленные явлением электромагнитной индукции, которые заключаются в том, что корпус корабля при своем движении пересекает силовые линии магнитного поля Земли, в результате чего в корпусе корабля и близлежащих массах воды возникают электрические токи. Аналогично такие токи появляются в корабельных винтах при их вращении в МПЗ и МПК.

3. Процессы, связанные с утечкой токов корабельного электрооборудования на корпус корабля и в воду.

Основной причиной образования ЭПК являются электрохимические процессы между разнородными металлами. Около 99 % от максимальной величины ЭПК приходится именно на электрохимические процессы. Поэтому для снижения уровня ЭПК стремятся устранить эту причину.

Электрическое поле корабля значительно превосходит естественное электрическое поле Мирового океана, что позволяет использовать его для создания неконтактного морского оружия и средств обнаружения подводных лодок.

С целью снижения электрического поля корабля проводится ряд мероприятий, основными из которых являются следующие:

Применение неметаллических материалов для изготовления корпуса и деталей, омываемых морской водой;

Подбор металлов по близости значений их электродных потенциалов для корпуса и деталей, омываемых морской водой;

Экранирование источников ЭПК;

Разъединение внутренней электрической цепи источников ЭПК;

Покрытие источников ЭПК электроизолирующими материалами.

г ) Магнитное поле корабля.

Магнитным полем корабля (МПК) называется область пространства, в котором естественное магнитное поле Земли искажено из-за присутствия или движения корабля, намагниченного в поле земли.

Магнитное поле корабля (МПК) широко используется в неконтактных взрывателях минно-торпедного оружия, а также в стационарных и авиационных системах магнитометрического обнаружения ПЛ.

Причины возникновения магнитного поля корабля заключаются в следующем. Любое вещество всегда магнитно, т.е. изменяет свои свойства в магнитном поле, но степень изменения свойств, для различных веществ не одинакова.

Различают слабомагнитные вещества, (например алюминий, медь, титан, вода), и сильномагнитные, (такие как железо, никель, кобальт и некоторые сплавы). Вещества, способные сильно намагничиваться, получили название ферромагнетиков.

Для количественной характеристики магнитного поля служит специальная физическая величина - напряженность магнитного поля Н .

Другой важной физической величиной, характеризующей в первую очередь магнитные свойства материала является интенсивность намагничивания I . Кроме того существуют понятия остаточного намагничивания и индуктивного н а магничивания.

Остаточным намагничиванием называется постоянное намагничивание корабля, которое сохраняется на достаточно длительный промежуток времени неизменным при изменении или отсутствии МПЗ.

Индуктивным намагничиванием корабля называется величина, которая непрерывно и пропорционально изменяется при изменении МПЗ.

Корабль, корпус которого построен из ферромагнитного материала, или имеющий другие ферромагнитные массы (главные двигатели, котлы, и т.д.) находясь в магнитном поле Земли намагничивается, т.е. приобретает собственное магнитное поле.

Магнитное поле корабля в основном зависит от магнитных свойств материалов, из которых построен корабль, технологии постройки, размеров и распределения ферромагнитных масс, места постройки и районов плавания, курса, качки и некоторых других факторов.

Способы снижения магнитного поля корабля рассмотрим более подробно в следующем вопросе занятия.

3. Размагничивающее устройство кора б ля

Задача снижения магнитного поля корабля может решаться двумя путями:

применение в конструкции корпуса, оборудования и механизмов корабля маломагнитных материалов;

проведение размагничивания корабля.

Применения маломагнитных и немагнитных материалов для создания корабельных конструкций позволяет в значительной степени снизить магнитное поле корабля. Поэтому при строительстве специальных кораблей (тральщиков, минных заградителей) широко используются такие материалы как стеклопластик, пластмассы, алюминиевые сплавы и т.д. При строительстве некоторых проектов атомных подводных лодок применяется титан и его сплавы, который наряду с высокой прочностью является маломагнитным материалом.

Однако прочность и другие механические и экономические показатели маломагнитных материалов позволяют применять их при строительстве боевых кораблей в ограниченных пределах.

Кроме того, если даже корпусные конструкции кораблей выполнять из маломагнитных материалов, то целый ряд корабельных механизмов остается выполненным из ферромагнитных металлов, которые также создают магнитное поле. Поэтому в настоящее время основным способом магнитной защиты большинства кораблей является их размагничивание.

Размагничиванием корабля называется комплекс мероприятий направленных на искусственное уменьшение составляющих напряженности его магнитного поля.

Основными задачами размагничивания являются:

а) уменьшение всех составляющих напряженности МПК до пределов, установленных специальными нормами;

б) обеспечение стабильности размагниченного состояния корабля.

Одним из методов решения этих задач является проведение обмоточного размагничивания.

Сущность метода обмоточного размагничивания заключается в том, что МПК компенсируется магнитным полем тока специально смонтированных на корабле штатных обмоток.

Совокупность системы обмоток, источников их питания, а также аппаратуры управления и контроля составляет размагничивающее устройство (РУ) корабля.

В систему обмоток РУ корабля могут входить следующие обмотки (в зависимости от типа и класса корабля):

а) Основная горизонтальная обмотка (ОГ), предназначенная для компенсации вертикальной составляющей МПК. Для размагничивания большей массы ферромагнитного материала корпуса ОГ разбивается на ярусы, при этом каждый ярус состоит из нескольких секций.

б) Курсовая шпангоутная обмотка (КШ), предназначенная для компенсации продольного индуктивного намагничивания корабля. Она состоит из ряда последовательно соединенных витков, расположенных в шпангоутных плоскостях.

а) Основная горизонтальная обмотка ОГ.

б) Курсовая шпангоутная обмотка КШ.

в) Курсовая батоксовая обмотка КБ.

в) Курсовая батоксовая обмотка (КБ), предназначенная для компенсации поля индуктивного поперечного намагничивания корабля. Она монтируется в виде нескольких контуров, расположенных побортно в батоксовых плоскостях, симметрично относительно диаметральной плоскости корабля.

г) Постоянные обмотки, применяются на кораблях большого водоизмещения. К этим видам обмоток относятся постоянная шпангоутная обмотка (ПШ) и постоянная батоксовая обмотка (ПБ). Эти обмотки прокладываются по трассе обмоток КШ и КБ и никаких видов регулирования тока в процессе эксплуатации не имеют.

д) Специальные обмотки (СО), предназначенные для компенсации магнитных полей от отдельных крупных ферромагнитных масс и мощных электрических установок (контейнеры с ракетами, тральные агрегаты, аккумуляторные батареи и т.д.)

Питание обмоток РУ осуществляется только постоянным током от специальных агрегатов питания РУ. Агрегатами питания РУ являются электромашинные преобразователи, состоящие из приводного двигателя переменного тока и генератора постоянного тока.

Для питания преобразователей и обмоток РУ на кораблях устанавливаются специальные щиты питания РУ, получающие питание от двух источников тока, расположенных на разных бортах. На щитах РУ устанавливается необходимая коммутационная, защитная, измерительная и сигнальная аппаратура.

Для автоматического управления токами в обмотках РУ устанавливается специальная аппаратура, которая производит регулировку токов в обмотках РУ в зависимости от магнитного курса корабля. В настоящее время на кораблях используются регуляторы тока типа «КАДР-М» и «КАДМИЙ».

Наряду с обмоточным размагничиванием, т.е. использованием РУ, надводные корабли и подводные лодки периодически подвергаются безобмоточному размагничиванию.

Сущность безобмоточного размагничивания заключается в том, что корабль подвергается кратковременному воздействию сильных, искусственно созданных магнитных полей, уменьшающих МПК до определенных норм. Сам корабль при этом методе никаких стационарных размагничивающих обмоток не имеет. Безобмоточное размагничивание производится на специальных стендах СБР (стенд безобмоточного размагничивания).

Основными недостатками метода безобмоточного размагничивания являются недостаточная стабильность размагниченного состояния корабля, невозможность компенсации индуктивных составляющих МПК, зависящих от курса и длительность процесса безобмоточного размагничивания.

Таким образом, максимальное снижение магнитного поля корабля достигается путем применения двух методов размагничивания - обмоточного и безобмоточного. Применение РУ позволяет скомпенсировать МПК в процессе эксплуатации, но так как магнитное поле корабля с течением времени может значительно изменяться, то корабли нуждаются в периодической магнитной обработке на СБР. Кроме того на СБР производятся замеры величины магнитного поля корабля, с целью поддержания МПК в установленных приделах.

Заключение

Таким образом, рассмотренные физические поля корабля связаны непосредственно с его эксплуатацией. На использовании этих физических полей построены различные системы обнаружения кораблей и ПЛ, системы наведения оружия, а также неконтактные взрыватели минно-торпедного оружия.

В связи с этим, снижение уровней физических полей корабля и поддержание их в допустимых пределах, является важной задачей всего экипажа корабля.

Обнаружение корабля любыми средствами наблюдения, а также срабатывание неконтактных систем самонаведения и взрывателей оружия происходит тогда, когда интенсивность поля корабля превысит порог чувствительности указанных средств.

Существует несколько принципиально различных способов уменьшения вероятности обнаружения и поражения кораблей боевыми средствами и неконтактными системами. Сущность их сводится к следующему:

1. Использовать маскирующие особенности полей Мирового океана, особенности водной или воздушной среды, тактические приемы с таким расчетом, чтобы по возможности наблюдая за противником, обеспечить на определенном расстоянии собственную скрытность и наименьшую вероятность поражения неконтактным оружием.

2. Снизить интенсивность источников физического поля корабля с помощью конструктивных и организационных мероприятий. Этот способ называют обеспечением физической защиты корабля.

Защищенность корабля от обнаружения и воздействия различных видов оружия в значительной степени влияют на боеспособность корабля и на эффективное выполнение стоящих перед кораблем задач. Чем лучше обеспечена защита корабля, тем меньше вероятность получения им различных повреждений.

Если же корабль все же получает повреждения от воздействия оружия противника (или аварийные повреждения) то он должен обладать способностью противостоять этим повреждениям и восстанавливать свою боеспособность. Таким качеством является живучесть корабля.

Данное качество будет рассмотрено на следующем занятии.

Учебно-методическое обеспечение

1.Наглядные пособия: стенд «Продольный разрез корабля»,

Устройство УРТ-850.

2.Технические Средства Обучения: кодоскоп.

3.Приложение: слайды для кодоскопа.

Литература

1. УП «Физические поля корабля» Инв. № 210

Размещено на Allbest.ru

Подобные документы

    Основные цели и задачи создания корабля "Севастополь". Научно-техническая и промышленно-производственная база, имеющиеся ресурсы для создания судна. Характеристики, тактико-технические данные и особенности проекта корабля и его энергетических установок.

    курсовая работа , добавлен 04.12.2015

    Анализ разработки и внедрения интегрированной логистической поддержки корабля и систем вооружения на всех стадиях жизненного цикла судна, перечень необходимых нормативно-технических документов. График дефектных снарядов и расчет их среднего количества.

    курсовая работа , добавлен 20.01.2012

    Физические и химические свойства фосфорорганических соединений, механизм действия, влияние на различные системы, действие на ферменты, способы проникновения и идентификации. Механизм инактивирования холинэстеразы ФОС, первая помощь при отравлениях.

    реферат , добавлен 22.09.2009

    Сильнодействующие ядовитые вещества: определение, поражающие факторы, воздействие на человека. Физические, химические, токсические свойства и способы защиты. Профилактика возможных аварий на химически опасных объектах и снижение ущерба от них.

    курсовая работа , добавлен 02.05.2011

    Сернистый ангидрид, его физические, химические, токсические свойства. Оценка химической обстановки при разрушении емкостей, содержащих СДЯВ. Расчет глубины зоны заражения при аварии на химически опасном объекте. Способы локализации источника заражения.

    курсовая работа , добавлен 19.12.2011

    Влияние радиации на рождение людей с генными мутациями. Умственные и физические недостатки людей, появившихся после взрывов на Семипалатинском ядерном полигоне (Казахстан): микроцефалия, сколиоз, синдром Дауна, спинальная атрофия, церебральный паралич.

    презентация , добавлен 22.10.2013

    Иприт (горчичный газ) - боевое отравляющее вещество кожно-нарывного цитотоксического действия, алкилирующий агент. История открытия, получение, физические и химические свойства, поражающее действие. Первая помощь при поражении ипритом; защитные средства.

    презентация , добавлен 01.11.2013

    Актуальность и значимость механизма использования воздушного пространства. Признаки принципов охраны воздушного пространства: неприкосновенность, взаимное уважение суверенитета, мирное разрешение конфликтных ситуаций, всестороннее сотрудничество.

    реферат , добавлен 14.01.2009

    Мероприятия и действия по защите населения в военное время. Рекомендации по режимам защиты в зонах радиоактивного, химического, бактериологического заражения. Основные способы защиты населения от оружия массового поражения. Укрытие в защитных сооружениях.

    реферат , добавлен 15.06.2011

    Оружие массового поражения. Средства индивидуальной и коллективной защиты. Первая доврачебная неотложная помощь. Сердечно-легочная реанимация. Первая помощь при отравлениях. Обработка ран. Отморожение, ожоги, электротравмы, тепловой удар, утопление.