I. Механика

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Вы сейчас здесь: Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • Александрова Зинаида Васильевна, учитель физики и информатики

    Образовательное учреждение: МБОУ СОШ №5 п. Печенга, Мурманская обл.

    Предмет: физика

    Класс : 9 класс

    Тема урока : Движение тела по окружности с постоянной по модулю скоростью

    Цель урока:

      дать представление о криволинейном движении, ввести понятия частоты, периода, угловой скорости, центростремительного ускорения и центростремительной силы.

    Задачи урока:

    Образовательные:

      Повторить виды механического движения, познакомить с новыми понятиями: движение по окружности, центростремительное ускорение, период, частота;

      Выявить на практике связь периода, частоты и центростремительного ускорения с радиусом обращения;

      Использовать учебное лабораторное оборудование для решения практических задач.

    Развивающие :

      Развивать умения применять теоретические знания для решения конкретных задач;

      Развивать культуру логического мышления;

      Развивать интерес к предмету; познавательную деятельность при постановке и проведении эксперимента.

    Воспитательные :

      Формировать мировоззрение в процессе изучения физики и аргументировать свои выводы, воспитывать самостоятельность, аккуратность;

      Воспитывать коммуникативную и информационную культуру учащихся

    Оснащение урока:

      компьютер, проектор, экран, презентация к уроку « Движение тела по окружности» , распечатка карточек с заданиями;

      теннисный шар, волан для бадминтона, игрушечный автомобиль, шарик на нити, штатив;

      наборы для эксперимента: секундомер, штатив с муфтой и лапкой, шарик на нити, линейка.

    Форма организации обучения: фронтальная, индивидуальная, групповая.

    Тип урока: изучение и первичное закрепление знаний.

    Учебно-методическое обеспечение: Физика. 9 класс. Учебник. Перышкин А.В., Гутник Е.М. 14-е изд., стер. - М.: Дрофа, 2012 г.

    Время реализации урока : 45 минут

    1. Редактор, в котором выполнен мультимедиа ресурс: MS PowerPoint

    2. Вид мультимедиа ресурса: наглядная презентация учебного материала с использованием триггеров, встроенного видео и интерактивного теста.

    План проведения урока

      Организационный момент. Мотивация к учебной деятельности.

      Актуализация опорных знаний.

      Изучение нового материала.

      Беседа по вопросам;

      Решение задач;

      Выполнение исследовательской практической работы.

      Подведение итогов урока.

    Ход урока

    Этапы урока

    Временная реализация

      Организационный момент. Мотивация к учебной деятельности.

    Слайд 1. ( Проверка готовности к уроку, объявление темы и целей урока.)

    Учитель. Сегодня на уроке вы узнаете, что такое ускорение при равномерном движении тела по окружности и как его определить.

    2 мин

      Актуализация опорных знаний.

    Слайд 2.

    Ф изический диктант:

      Изменение положения тела в пространстве с течением времени. (Движение)

      Физическая величина, измеряемая в метрах. (Перемещение)

      Физическая векторная величина, характеризующая быстроту движения. (Скорость)

      Основная единица измерения длины в физике. (Метр)

      Физическая величина, единицами измерения которой служат год, сутки, час. (Время)

      Физическая векторная величина, которую можно измерить с помощью прибора акселерометра. (Ускорение)

      Длина траектории . (Путь)

      Единицы измерения ускорения (м/с 2 ).

    (Проведение диктанта с последующей проверкой, самооценка работ учениками)

    5 мин

      Изучение нового материала.

    Слайд 3.

    Учитель. Мы достаточно часто наблюдаем такое движение тела, при котором его траекторией является окружность. По окружности движется, например, точка обода колеса при его вращении, точки вращающихся деталей станков, конец стрелки часов.

    Демонстрации опытов 1. Падение теннисного шара, полёт волана для бадминтона, перемещение игрушечного автомобиля, колебания шарика на нити, закреплённого в штативе. Что общего и чем отличаются эти движения по виду? (Ответы учеников)

    Учитель. Прямолинейное движение – это движение, траектория которого - прямая линия, криволинейное – кривая. Приведите примеры прямолинейного и криволинейного движения, с которыми вы встречались в жизни. (Ответы учеников)

    Движение тела по окружности является частным случаем криволинейного движения .

    Любую кривую можно представить, как сумму дуг окружностей разного (или одинакового) радиуса.

    Криволинейным движением называют такое движение, которое совершается по дугам окружностей.

    Введём некоторые характеристики криволинейного движения.

    Слайд 4. (просмотр видео « скорость.avi» по ссылке на слайде)

    Криволинейное движение с постоянной по модулю скоростью. Движение с ускорением, т.к. скорость меняет направление.

    Слайд 5 . (просмотр видео «Зависимость центростремительного ускорения от радиуса и скорости. аvi » по ссылке на слайде)

    Слайд 6. Направление векторов скорости и ускорения.

    (работа с материалами слайда и анализ рисунков, рациональное использование эффектов анимации, заложенных в элементы рисунков, рис 1.)

    Рис.1.

    Слайд 7.

    При равномерном движении тела по окружности вектор ускорения всё время перпендикулярен вектору скорости, который направлен по касательной к окружности.

    Тело движется по окружности при условии, что вектор линейной скорости перпендикулярен вектору центростремительного ускорения.

    Слайд 8. (работа с иллюстрациями и материалами слайда)

    Центростремительное ускорение - ускорение, с которым тело движется по окружности с постоянной по модулю скоростью, всегда направлено вдоль радиуса окружности к центру.

    a ц =

    Слайд 9.

    При движении по окружности тело через определённый промежуток времени вернётся в первоначальную точку. Движение по окружности – периодическое.

    Период обращения – это промежуток времени Т , в течение которого тело (точка) совершает один оборот по окружности.

    Единица измерения периода - секунда

    Частота вращения  – число полных оборотов в единицу времени.

    [ ] = с -1 = Гц


    Единица измерения частоты

    Сообщение ученика 1. Период - это величина, которая часто встречается в природе, науке и технике. Земля вращается вокруг своей оси, средний период этого вращения составляет 24 часа; полный оборот Земли вокруг Солнца происходит примерно за 365,26 суток; винт вертолёта имеет средний период вращения от 0,15 до 0,3 с; период кровообращения у человека равен примерно 21 - 22 с.

    Сообщение ученика 2. Частоту измеряют специальными приборами – тахометрами.

    Частота вращения технических устройств: ротор газовой турбины вращается с частотой от 200 до 300 1/с; пуля, вылетевшая из автомата Калашникова, вращается с частотой 3000 1/с.

    Слайд 10. Связь периода с частотой:

    Если за время t тело совершило N полных оборотов, то период обращения равен:

    Период и частота – это взаимообратные величины: частота обратно пропорциональна периоду, а период обратно пропорционален частоте

    Слайд 11. Быстроту обращения тела характеризуют угловой скоростью.

    Угловая скорость (циклическая частота)- число оборотов за единицу времени, выраженное в радианах.

    Угловая скорость – угол поворота, на который поворачивается точка за время t .

    Угловая скорость измеряется в рад/с.

    Слайд 12. (просмотр видео «Путь и перемещение при криволинейном движении.avi» по ссылке на слайде)

    Слайд 13 . Кинематика движения по окружности.

    Учитель. При равномерном движении по окружности модуль его скорости не изменяется. Но скорость - векторная величина, и она характеризуется не только числовым значением, но и направлением. При равномерном движении по окружности всё время изменяется направление вектора скорости. Поэтому такое равномерное движение является ускоренным.

    Линейная скорость: ;

    Линейная и угловая скорости связаны соотношением:

    Центростремительное ускорение: ;

    Угловая скорость: ;

    Слайд 14. (работа с иллюстрациями на слайде)

    Направление вектора скорости. Линейная (мгновенная скорость) всегда направлена по касательной к траектории, проведенной к той ее точке, где в данный момент находится рассматриваемое физическое тело.

    Вектор скорости направлен по касательной к описываемой окружности.

    Равномерное движение тела по окружности является движением с ускорением. При равномерном движении тела по окружности величины υ и ω остаются неизменными. В этом случае при движении изменяется только направление вектора.

    Слайд 15. Центростремительная сила.

    Сила, удерживающая вращающееся тело на окружности и направленная к центру вращения, называется центростремительной силой.

    Чтобы получить формулу для расчёта величины центростремительной силы, надо воспользоваться вторым законом Ньютона, который применим и к любому криволинейному движению.

    Подставляя в формулу значение центростремительного ускорения a ц = , получим формулу центростремительной силы:

    F =

    Из первой формулы видно, что при одной и той же скорости чем меньше радиус окружности, тем больше центростремительная сила. Так, на поворотах дороги на движущееся тело (поезд, автомобиль, велосипед) должна действовать по направлению к центру закругления тем большая сила, чем круче поворот, т. е. чем меньше радиус закругления.

    Центростремительная сила зависит от линейной скорости: с увеличением скорости она увеличивается. Это хорошо известно всем конькобежцам, лыжникам и велосипедистам: чем с большей скоростью движешься, тем труднее сделать поворот. Шофёры очень хорошо знают, как опасно круто поворачивать автомобиль на большой скорости.

    Слайд 16.

    Сводная таблица физических величин, характеризующих криволинейное движение (анализ зависимостей между величинами и формулами)

    Слайды 17, 18, 19. Примеры движение по окружности.

    Круговое движение на дорогах. Движение спутников вокруг Земли.

    Слайд 20. Аттракционы, карусели.

    Сообщение ученика 3. В Средние века каруселями (слово тогда имело мужской род) называли рыцарские турниры. Позднее, в XVIII веке, для подготовки к турнирам, вместо схваток с реальными соперниками, стали использовать вращающуюся платформу, прообраз современной развлекательной карусели, которая тогда же появилась на городских ярмарках.

    В России первый карусель был построен 16 июня 1766 года перед Зимним дворцом. Карусель состоял из четырёх кадрилей: Славянской, Римской, Индийской, Турецкой. Второй раз карусель была построена на том же месте, в том же году 11 июля. Подробное описание этих каруселей приводятся в газете Санкт-Петербургские ведомости 1766 года.

    Карусель, распространённая во дворах в советское время. Карусель может приводиться в движение как двигателем (обычно электрическим), так и силами самих крутящихся, которые перед тем как сесть на карусель, раскручивают её. Такие карусели, которые нужно раскручивать самим катающимся, часто устанавливают на детских игровых площадках.

    Кроме аттракционов, каруселями часто называют другие механизмы, имеющие сходное поведение - например, в автоматизированных линиях по разливу напитков, упаковке сыпучих веществ или производству печатной продукции.

    В переносном смысле каруселью называют череду быстро сменяющихся предметов или событий.

    18 мин

      Закрепление нового материала. Применение знаний и умений в новой ситуации.

    Учитель. Сегодня на этом уроке мы познакомились с описанием криволинейного движения, с новыми понятиями и новыми физическими величинами.

    Беседа по вопросам:

      Что такое период? Что такое частота? Как связаны между собой эти величины? В каких единицах измеряются? Как их можно определить?

      Что такое угловая скорость? В каких единицах она измеряется? Как можно её рассчитать?

      Что называют угловой скоростью? Что является единицей угловой скорости?

      Как связаны угловая и линейная скорости движения тела?

      Как направлено центростремительное ускорение? По какой формуле оно рассчитывается?

    Слайд 21.

    Задание 1. Заполните таблицу, решив задачи по исходным данным (Рис.2), затем мы сверим ответы. (Ученики работают самостоятельно с таблицей, необходимо заранее приготовить распечатку таблицы для каждого ученика)

    Рис.2

    Слайд 22. Задание 2. (устно)

    Обратите внимание на анимационные эффекты рисунка. Сравните характеристики равномерного движения синего и красного шара . (Работа с иллюстрацией на слайде).

    Слайд 23. Задание 3. (устно)

    Колёса представленных видов транспорта за одно и то же время совершают равное количество оборотов. Сравните их центростремительные ускорения. (Работа с материалами слайда)

    (Работа в группе, проведение эксперимента, распечатка инструкции для проведения эксперимента есть на каждом столе)

    Оборудование: секундомер, линейка, шарик, закреплённый на нити, штатив с муфтой и лапкой.

    Цель: исследовать зависимость периода, частоты и ускорения от радиуса вращения .

    План работы

      Измерьте время t 10 полных оборотов вращательного движения и радиус R вращения, шарика, закреплённого на нити в штативе.

      Вычислите период Т и частоту, скорость вращения, центростремительное ускорение Результаты оформите в виде задачи.

      Измените радиус вращения (длину нити), повторите опыт ещё 1 раза, стараясь сохранить прежней скорость, прикладывая прежнее усилие.

      Сделайте вывод о зависимости периода, частоты и ускорения от радиуса вращения (чем меньше радиус вращения, тем меньше период обращения и больше значение частоты).

    Слайды 24 -29.

    Фронтальная работа с интерактивным тестом.

    Необходимо выбрать один ответ из трёх возможных, если был выбран правильный ответ, то он остаётся на слайде, и начинает мигать зелёный индикатор, неверные ответы исчезают.

      Тело движется по окружности с постоянной по модулю скоростью. Как изменится его центростремительное ускорение при уменьшении радиуса окружности в 3 раза?

      В центрифуге стиральной машины белье при отжиме движется по окружности с постоянной по модулю скоростью в горизонтальной плоскости. Как при этом направлен вектор его ускорения?

      Конькобежец движется со скоростью 10 м/с по окружности радиусом 20 м. Определите его центростремительное ускорение.

      Куда направлено ускорение тела при его движении по окружности с постоянной по модулю скоростью?

      Материальная точка движется по окружности с постоянной по модулю скоростью. Как изменится модуль ее центростремительного ускорения, если скорость точки увеличить втрое?

      Колесо машины делает 20 оборотов за 10 с. Определите период обращения колеса?


    Слайд 30. Решение задач (самостоятельная работа при наличии времени на уроке)

    Вариант 1.

    С каким периодом должна вращаться карусель радиусом 6,4 м для того, чтобы центростремительное ускорение человека на карусели было равно 10 м/с 2 ?

    На арене цирка лошадь скачет с такой скоростью, что за 1 минуту обегает 2 круга. Радиус арены равен 6,5 м. Определите период и частоту вращения, скорость и центростремительное ускорение.

    Вариант 2.

    Частота обращения карусели 0,05 с -1 . Человек, вращающийся на карусели, находится на расстоянии 4 м от оси вращения. Определите центростремительное ускорение человека, период обращения и угловую скорость карусели.

    Точка обода колеса велосипеда совершает один оборот за 2 с. Радиус колеса 35 см. Чему равно центростремительное ускорение точки обода колеса?

    18 мин

      Подведение итогов урока.

    Выставление оценок. Рефлексия.

    Слайд 31 .

    Д/з: п. 18-19, Упр.18 (2,4).

    http :// www . stmary . ws / highschool / physics / home / lab / labGraphic . gif

    На этом уроке мы рассмотрим криволинейное движение, а именно равномерное движение тела по окружности. Мы узнаем, что такое линейная скорость, центростремительное ускорение при движении тела по окружности. Также введем величины, которые характеризуют вращательное движение (период вращения, частота вращения, угловая скорость), и свяжем эти величины между собой.

    Под равномерным движением по окружности понимают, что тело за любой одинаковый промежуток времени поворачивается на одинаковый угол (см. Рис. 6).

    Рис. 6. Равномерное движение по окружности

    То есть модуль мгновенной скорости не меняется:

    Такую скорость называют линейной .

    Хотя модуль скорости не меняется, направление скорости изменяется непрерывно. Рассмотрим векторы скорости в точках A и B (см. Рис. 7). Они направлены в разные стороны, поэтому не равны. Если вычесть из скорости в точке B скорость в точке A , получаем вектор .

    Рис. 7. Векторы скорости

    Отношение изменения скорости () ко времени, за которое это изменение произошло (), является ускорением.

    Следовательно, любое криволинейное движение является ускоренным .

    Если рассмотреть треугольник скоростей, полученный на рисунке 7, то при очень близком расположении точек A и B друг к другу угол (α) между векторами скорости будет близок к нулю:

    Также известно, что этот треугольник равнобедренный, поэтому модули скоростей равны (равномерное движение):

    Следовательно, оба угла при основании этого треугольника неограниченно близки к :

    Это означает, что ускорение, которое направлено вдоль вектора , фактически перпендикулярно касательной. Известно, что линия в окружности, перпендикулярная касательной, является радиусом, поэтому ускорение направлено вдоль радиуса к центру окружности. Называется такое ускорение центростремительным.

    На рисунке 8 изображены рассмотренный ранее треугольник скоростей и равнобедренный треугольник (две стороны являются радиусами окружности). Эти треугольники являются подобными, так как у них равны углы, образованные взаимно перпендикулярными прямыми (радиус, как и вектор перпендикулярны к касательной).

    Рис. 8. Иллюстрация к выводу формулы центростремительного ускорения

    Отрезок AB является перемещением (). Мы рассматриваем равномерное движение по окружности, поэтому:

    Подставим полученное выражение для AB в формулу подобия треугольников:

    Понятий «линейная скорость», «ускорение», «координата» не достаточно для того, чтобы описать движение по кривой траектории. Поэтому необходимо ввести величины, характеризующие вращательное движение.

    1. Периодом вращения (T ) называется время одного полного оборота. Измеряется в системе СИ в секундах.

    Примеры периодов: Земля вращается вокруг своей оси за 24 часа (), а вокруг Солнца - за 1 год ().

    Формула для вычисления периода:

    где - полное время вращения; - число оборотов.

    2. Частота вращения (n ) - число оборотов, которое тело совершает в единицу времени. Измеряется в системе СИ в обратных секундах.

    Формула для нахождения частоты:

    где - полное время вращения; - число оборотов

    Частота и период - обратно пропорциональные величины:

    3. Угловой скоростью () называют отношение изменения угла, на который повернулось тело, ко времени, за которое этот поворот произошел. Измеряется в системе СИ в радианах, деленных на секунды.

    Формула для нахождения угловой скорости:

    где - изменение угла; - время, за которое произошел поворот на угол .

    1.Равномерное движение по окружности

    2.Угловая скорость вращательного движения.

    3.Период вращения.

    4.Частота вращения.

    5.Связь линейной скорости с угловой.

    6.Центростремительное ускорение.

    7.Равнопеременное движение по окружности.

    8.Угловое ускорение в равнопеременном движении по окружности.

    9.Тангенциальное ускорение.

    10.Закон равноускоренного движения по окружности.

    11. Средняя угловая скорость в равноускоренном движении по окружности.

    12.Формулы, устанавливающие связь между угловой скоростью, угловым ускорением и углом поворота в равноускоренном движении по окружности.

    1.Равномерное движение по окружности – движение, при котором материальная точка за равные интервалы времени проходит равные отрезки дуги окружности, т.е. точка движется по окружности с постоянной по модулю скоростью. В этом случае скорость равна отношению дуги окружности, пройденной точкой ко времени движения, т.е.

    и называется линейной скоростью движения по окружности.

    Как и в криволинейном движении вектор скорости направлен по касательной к окружности в направлении движения (Рис.25).

    2. Угловая скорость в равномерном движении по окружности – отношение угла поворота радиуса ко времени поворота:

    В равномерном движении по окружности угловая скорость постоянна. В системе СИ угловая скорость измеряется в(рад/c). Один радиан – рад это центральный угол, стягивающий дугу окружности длиной равной радиусу. Полный угол содержит радиан, т.е. за один оборот радиус поворачивается на угол радиан.

    3. Период вращения – интервал времени Т, в течении которого материальная точка совершает один полный оборот. В системе СИ период измеряется в секундах.

    4. Частота вращения – число оборотов , совершаемых за одну секунду. В системе СИ частота измеряется в герцах (1Гц = 1 ) . Один герц – частота, при которой за одну секунду совершается один оборот. Легко сообразить, что

    Если за время t точка совершает n оборотов по окружности то .

    Зная период и частоту вращения, угловую скорость можно вычислять по формуле:

    5 Связь линейной скорости с угловой . Длина дуги окружности равна где центральный угол, выраженный в радианах, стягивающий дугу радиус окружности. Теперь линейную скорость запишем в виде

    Часто бывает удобно использовать формулы: или Угловую скорость часто называют циклической частотой, а частоту линейной частотой.

    6. Центростремительное ускорение . В равномерном движении по окружности модуль скорости остаётся неизменным , а направление её непрерывно меняется (Рис.26). Это значит, что тело, движущееся равномерно по окружности, испытывает ускорение, которое направлено к центру и называется центростремительным ускорением.

    Пусть за промежуток времени прошло путь равный дуге окружности . Перенесём вектор , оставляя его параллельным самому себе, так чтобы его начало совпало с началом вектора в точке В. Модуль изменения скорости равен , а модуль центростремительного ускорения равен

    На Рис.26 треугольники АОВ и ДВС равнобедренные и углы при вершинах О и В равны, как углы с взаимно перпендикулярными сторонами АО и ОВ Это значит, что треугольники АОВ и ДВС подобные. Следовательно Если то есть интервал времени принимает сколь угодно малые значения, то дугу можно приближенно считать равной хорде АВ, т.е. . Поэтому можем записать Учитывая, что ВД= , ОА=R получим Умножая обе части последнего равенства на , получим и далее выражение для модуля центростремительного ускорения в равномерном движении по окружности: . Учитывая, что получим две часто применяемые формулы:

    Итак, в равномерном движении по окружности центростремительное ускорение постоянно по модулю.

    Легко сообразить, что в пределе при , угол . Это значит, что углы при основании ДС треугольника ДВС стремятся значению , а вектор изменения скорости становится перпендикулярным к вектору скорости , т.е. направлен по радиусу к центру окружности.

    7. Равнопеременное движение по окружности – движение по окружности, при котором за равные интервалы времени угловая скорость изменяется на одну и ту же величину.

    8. Угловое ускорение в равнопеременном движении по окружности – отношение изменения угловой скорости к интервалу времени , в течении которого это изменение произошло, т.е.

    где начальное значение угловой скорости, конечное значение угловой скорости, угловое ускорение, в системе СИ измеряется в . Из последнего равенства получим формулы для вычисления угловой скорости

    И , если .

    Умножая обе части этих равенств на и учитывая, что , - тангенциальное ускорение, т.е. ускорение, направленное по касательной к окружности, получим формулы для вычисления линейной скорости:

    И , если .

    9. Тангенциальное ускорение численно равно изменению скорости в единицу времени и направлено вдоль касательной к окружности. Если >0, >0, то движение равноускоренное. Если <0 и <0 – движение.

    10. Закон равноускоренного движения по окружности . Путь, пройденный по окружности за время в равноускоренном движении, вычисляется по формуле:

    Подставляя сюда , , сокращая на , получим закон равноускоренного движения по окружности:

    Или , если .

    Если же движение равнозамедленное, т.е. <0, то

    11.Полное ускорение в равноускоренном движении по окружности . В равноускоренном движении по окружности центростремительное ускорение с течением времени возрастает, т.к. благодаря тангенциальному ускорению возрастает линейная скорость. Очень часто центростремительное ускорение называют нормальным и обозначают как . Так как полное ускорение в данный момент определяют по теореме Пифагора (Рис.27).

    12. Средняя угловая скорость в равноускоренном движении по окружности . Средняя линейная скорость в равноускоренном движении по окружности равна . Подставляя сюда и и сокращая на получим

    Если , то .

    12. Формулы, устанавливающие связь между угловой скоростью, угловым ускорением и углом поворота в равноускоренном движении по окружности .

    Подставляя в формулу величины , , , ,

    и сокращая на , получим

    Лекция- 4. Динамика.

    1. Динамика

    2. Взаимодействие тел.

    3. Инерция. Принцип инерции.

    4. Первый закон Ньютона.

    5. Свободная материальная точка.

    6. Инерциальная система отсчета.

    7. Неинерциальная система отсчета.

    8. Принцип относительности Галилея.

    9. Преобразования Галилея.

    11. Сложение сил.

    13. Плотность веществ.

    14. Центр масс.

    15. Второй закон Ньютона.

    16. Единица измерения силы.

    17. Третий закон Ньютона

    1. Динамика есть раздел механики, изучающий механическое движение, в зависимости от сил, вызывающих изменение этого движения.

    2.Взаимодействия тел . Тела могут взаимодествовать, как при непосредственном соприкосновенном соприкосновении, так и на расстоянии посредством особого вида материи, называемого физическим полем.

    Например, все тела притягиваются друг к другу и это притяжение осуществляется посредством гравитационного поля, а силы притяжения называются гравитационными.

    Тела, несущие в себе электрический заряд, взаимодействуют посредством электрического поля. Электрические токи взаимодействуют посредством магнитного поля. Эти силы называют электромагнитными.

    Элементарные частицы взаимодействуют посредсвом ядерных полей и эти силы называют ядерными.

    3.Инерция . В IV в. до н. э. греческий философ Аристотель утверждал, что причиной движения тела является сила, действующая со стороны другого тела или тел. При этом, по движения мнению Аристотеля постоянная сила сообщает телу постоянную скорость и с прекращением действия силы прекращается движение.

    В 16 в. итальянский физик Галилео Галилей, проводя опыты с телами, скатывающимися по наклонной плоскости и с падающими телами показал, что постоянная сила (в данном случае вес тела) сообщает телу ускорение.

    Итак, на основе экспериментов Галилей показал, что сила причина ускорения тел. Приведем рассуждения Галилея. Пусть очень гладкий шар катится по гладкой горизонтальной плоскости. Если шару ничего не мешает, то он может катиться сколь угодно долго. Если же на пути шара насыпать тонкий слой песка, то он очень скоро остановится, т.к. на него подействовала сила трения песка.

    Так Галилей пришел к формулировке принципа инерции, согласно которому материальное тело сохраняет состояние покоя или равномерного прямолинейного движения, если на не действуют внешние силы. Часто это свойство материи называют инерцией, а движение тела без внешних воздействий- движением по инерции.

    4. Первый закон Ньютона . В 1687 году на основе принципа инерции Галилея Ньютон сформулировал первый закон динамики – первый закон Ньютона:

    Материальная точка (тело) находится в состоянии покоя или равномерного прямолинейного движения, если на неё не действуют другие тела, либо силы, действующие со стороны других тел, уравновешены, т.е. скомпенсированы.

    5.Свободная материальная точка – материальная точка, на которую не действуют другие тела. Иногда говорят – изолированная материальная точка.

    6. Инерциальная система отсчета (ИСО) – система отсчёта, относительно которой изолированная материальная точка движется прямолинейно и равномерно, либо находится в состоянии покоя.

    Любая система отсчёта, которая движется равномерно и прямолинейно относительно ИСО является инерциальной,

    Приведём ещё одну формулировку первого закона Ньютона: Существуют системы отсчёта, относительно которых свободная материальная точка движется прямолинейно и равномерно, либо находится в состоянии покоя. Такие системы отсчёта называются инерциальными. Часто первый закон Ньютона называют законом инерции.

    Первому закону Ньютона можно дать ещё и такую формулировку: всякое материальное тело сопротивляется изменению его скорости. Это свойство материи называется инертностью.

    С проявлением этого закона мы сталкиваемся ежедневно в городском транспорте. Когда автобус резко набирает скорость, нас прижимает к спинке сидения. Когда же автобус тормозит, то наше тело заносит по ходу движения автобуса.

    7. Неинерциальная система отсчёта – система отсчёта, которая движется неравномерно относительно ИСО.

    Тело, которое относительно ИСО находится в состоянии покоя или равномерного прямолинейного движения. Относительно неинерциальной системы отсчёта движется неравномерно.

    Любая вращающаяся система отсчёта есть неинерциальная система отсчёта, т.к. в этой системе тело испытывает центростремительное ускорение.

    В природе и технике нет тел, которые могли бы служить в качестве ИСО. Например, Земля вращается вокруг своей оси и любое тело на её поверхности испытывает центростремительное ускорение. Однако в течение достаточно коротких промежутков времени систему отсчёта, связанную с поверхностью Земли в некотором приближении можно считать ИСО.

    8.Принцип относительности Галилея. ИСО может быть соль угодно много. Поэтому возникает вопрос: как выглядят одни и те же механические явления в разных ИСО? Можно ли используя механические явления, обнаружить движение ИСО, в которой они наблюдаются.

    Ответ на эти вопросы дает принцип относительности классической механики, открытый Галилеем.

    Смысл принципа относительности классической механики заключается в утверждении: все механические явления протекают совершенно одинаково во всех инерциальных системах отсчёта.

    Этот принцип можно сформулировать и так: все законы классической механики выражаются одинаковыми математическими формулами. Иными словами никакие механические опыты не помогут нам обнаружить движение ИСО. Это значит, что попытка обнаружить движение ИСО лишена смысла.

    С проявлением принципа относительности мы сталкивались, путишествуя в поездах. В момент, когда наш поезд стоит на станции, а поезд, стоявший на соседнем пути, медленно начинает движение, то в первые мгновения нам кажется, движется наш поезд. Но бывает и наоборот, когда наш поезд плавно набирает ход, нам кажется, что движение начал соседний поезд.

    В приведённом примере принцип относительности проявляется в течение малых интервалов времени. С увеличением скорости мы начинаем ощущать толчки раскачивание вагона, т. е. наша система отсчёта становится неинерциальной.

    Итак, попытка обнаружить движение ИСО лишена смысла. Следовательно, абсолютно безразлично, какую ИСО считать неподвижной, а какую – движущейся.

    9. Преобразования Галилея . Пусть две ИСО и движутся друг относительно друга со скоростью . Согласно с принципом относительности мы можем положить, что ИСО К неподвижна, а ИСО движется относительно со скоростью . Для простоты положим, что соответствующие оси координат систем и параллельны, а оси и совпадают. Пусть в момент начала систем совпадают и движение происходит вдоль осей и , т.е. (Рис.28)

    11. Сложение сил . Если частице приложены две силы, то результирующая сила равна их векторной , т.е. диагонали параллелограмма, построенного на векторах и (Рис.29).

    Этим же правилом при разложении данной силы на две составляющие силы. Для этого на векторе данной силы, как на диагонали строят параллелограмм, стороны которого совпадают с направлением составляющих сил, приложенных к данной частице.

    Если же к частице приложены несколько сил, то результирующая равна геометрической сумме всех сил:

    12.Масса . Опыт показал, что отношение модуля силы к модулю ускорения, которое эта сила сообщает телу, есть величина постоянная для данного тела и называется массой тела:

    Из последнего равенства следует, что чем больше масса тела, большую силу необходимо приложить, чтобы изменить его скорость. Следовательно, чем больше масса тела тем оно более инертно, т.е. масса есть мера инертности тел. Массу определённую таким образом называют инертной массой.

    В системе СИ масса измеряется в килограммах (кг). Один килограмм – это масса дисциллирванной воды в объёме одного кубического дециметра взятой при температуре

    13. Плотность вещества – масса вещества, содержащегося в единице объёма или отношение массы тела к его объёму

    Плотность измеряется в () в системе СИ. Зная плотность тела и его объём можно вычислить его массу по формуле . Зная плотность и массу тела, его объём вычисляют по формуле .

    14.Центр масс – точка тела, обладающая тем свойством, что, если направление действия силы проходит через эту точку тело движется поступательно. Если же направление действия не проходит через центр масс, то тело перемещается, одновременно вращаясь вокруг своего центра масс

    15. Второй закон Ньютона . В ИСО сумма сил, действующих на тело равна произведению массы тела на ускорение, сообщаемое ему этой силой

    16.Единица измерения силы . В системе СИ сила измеряется в ньютонах. Один ньютон (н) – это сила, которая действуя на тело массой один килограмм сообщает ему ускорение . Поэтому .

    17. Третий закон Ньютона . Силы, с которыми два тела действуют друг на друга, равны по модулю, противоположны по направлению и действуют вдоль одной прямой, соединяющей эти тела.

    Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назватьравномерным , оно являетсяравноускоренным .

    Угловая скорость

    Выберем на окружности точку1 . Построим радиус. За единицу времени точка переместится в пункт2 . При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

    Период и частота

    Период вращенияT - это время, за которое тело совершает один оборот.

    Частота вращение - это количество оборотов за одну секунду.

    Частота и период взаимосвязаны соотношением

    Связь с угловой скоростью

    Линейная скорость

    Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной.Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.


    Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено - это есть периодT .Путь , который преодолевает точка - это есть длина окружности.

    Центростремительное ускорение

    При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

    Используя предыдущие формулы, можно вывести следующие соотношения


    Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

    Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

    Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

    Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

    Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

    Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна

    Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А - уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.