Дальномер лазерный интересный принцип работы и критерии выбора. Дальномеры

Способность электромагнитного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так, при импульсном методе дальнометрирования используется следующее соотношение:

L = ct/2,

Где L - расстояние до обьекта,
- с - скорость распространения излучения,
- t - время прохождения импульса до цели и обратно.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Ясно, что чем короче импульс, тем лучше.

Задача определения расстояния между дальномером и целью сводится к измерению соответствующего интервала времени между зондирующим сигналом и сигналом, отраженным от цели. Различают три метода измерения дальности в зависимости от того, какой характер модуляции лазерного излучения используется в дальномере: импульсный, фазовый или фазо-импульсный.

Сущность импульсного метода дальнометрирования состоит в том, что к объекту посылают зондирующий импульс, он же запускает временной счетчик в дальномере. Когда отраженный объектом импульс приходит к дальномеру,то он останавливает работу счетчика. По временному интервалу (задержке отраженного импульса) определяется расстояние до объекта.

При фазовом методе дальнометрирования лазерное излучение модулируется по синусоидальному закону с помощью модулятора (электрооптического кристалла, изменяющего свои параметры под воздействием электрического сигнала). Обычно используют синусоидальный сигнал с частотой 10...150 МГц (измерительная частота). Отраженное излучение попадает в приемную оптику и фотоприемник, где выделяется модулирующий сигнал. В зависимости от дальности до объекта изменяется фаза отраженного сигнала относительно фазы сигнала в модуляторе. Измеряя разность фаз, определяют расстояние до объекта.

Наиболее популярные модели лазерных дальномеров для охоты среди наших покупателей:

Использование лазерных дальномеров в военных целях.

Лазерная дальнометрия является одной из первых областей практического применения лазеров в зарубежной военной технике. Первые опыты относятся к 1961г., а сейчас лазерные дальномеры используются в наземной военной техники (артиллерийские, танковые), и в авиации (дальномеры, высотомеры, целеуказатели), и на флоте. Эта техника прошла боевые испытания во Вьетнаме и на Ближнем Востоке. В настоящее время ряд дальномеров принят в армиях ряда стран.

Первый лазерный дальномер XM-23 прошел испытание во Вьетнаме и был принят на вооружение в армии США. Он был рассчитан на использование передовых наблюдательных пунктах сухопутных войск. Источником излучения в нем являлся лазер с выходной мощностью 2.5Вт и длительностью импульса 30нс. В конструкции дальномера широко использовались интегральные схемы. Излучатель, приемник и оптические элементы смонтированы в моноблоке, который имеет шкалы точного отсчета азимута и угла места цели. Питание дальномера осуществлялось от батареи никелево-кадмиевых аккумуляторов напряжением 24В, обеспечивающий 100 измерений дальности без подзарядки.

Один из первых серийных моделей - шведский дальномер, предназначенный для использования в системах управления бортовой корабельной и береговой артиллерии. Конструкция дальномера отличалось особой прочностью, что позволяло применять его в сложных условиях. Дальномер можно было сопрягать при необходимости с усилителем изображения или телевизионным визиром. Режимом работы дальномера предусматривалось либо измерения через каждые 2с в течение 20с, либо через каждые 4 с в течение длительного времени.

С начала 70-х годов на зарубежных танках устанавливаются лазерные дальномеры. Установка лазерных дальномеров на танки сразу заинтересовала зарубежных разработчиков вооружения. Это объясняется тем, что на танке можно ввести дальномер в систему управления огнем танка, чем повысить его боевые качества. По сравнению с оптическими они имеют ряд преимуществ: высокое быстродействие, автоматизированный процесс ввода измеренной дальности в прицельные устройства, высокую точность измерения, малые размеры, вес и т. д. Для этого в США был разработан дальномер AN/VVS-1 для танка М60А. Он не отличался по схеме от лазерного артиллерийского дальномера на рубине, однако помимо выдачи данных о дальности на цифровое табло имел устройство, обеспечивающее ввод дальности в счетно-решающее устройство системы управления огнем танка. При этом измерение дальности могло производиться как наводчиком пушки так и командиром танка. Режим работы дальномера - 15 измерений в минуту в течение одного часа.

Лазерные дальномеры, установленные на современных танках, позволяют измерять дальность до цели в пределах от 200 м до 8 000 м (на американских и французских танках) и от 200 до 10 000 м (на английских и западногерманских танках) с точностью до 10 м. Большинство активных элементов лазерных дальномеров, устанавливаемых в настоящее время на танках и БМП западного производства, созданы на основе кристалла граната с примесью неодима (активный элемент - кристалл иттриево-алюминиевого граната Y3A15O3, в который в качестве активных центров введены ионы неодима Ш3+). Эти лазеры генерируют излучение на длине волны 1,06 мкм. Имеются также лазерные дальномеры в которых активным элементом служит кристалл розового рубина. Здесь основой является кристалл окиси алюминия А12О3, а активными элементами ионы хрома Сг3*. Лазеры на рубине генерируют излучение на длине волны 0,69 мкм.

В последнее время на зарубежных боевых машинах начали применяться лазерные дальномеры на углекислом газе. В СО2-лазере в газоразрядной трубке находится смесь, состоящая из углекислого газа (СО2), молекулярного азота (N,) и различных небольших добавок в виде гелия, паров воды и т. д. Активные центры - молекулы СО2. Преимущество лазера на двуокиси углерода заключается в том, что его излучение (длина волны 10,6 мкм) относительно безопасно для зрения и обеспечивает лучшее проникновение через дым и туман. Кроме того, лазер постоянного излучения, работающий на этой длине волны, может использоваться для подсветки цели при работе с тепловизионным прицелом.

Бурное развитие микроэлектроники обеспечило уменьшение массо-габаритных показатели лазерных дальномеров, что позволило создать портативные дальномеры. Весьма удачным оказался норвежский лазерный дальномер LP-4. Он имел в качестве модулятора добротности оптико- механический затвор. Приемная часть дальномера является одновременно визиром оператора. Диаметр оптической системы составляет 70 мм. Приемником служит портативный фотодиод. Счетчик снабжен схемой стробирования по дальности, действующий по установке оператора от 200 до 3000 м. В схеме оптического визира перед окуляром помещен защитный фильтр для предохранения глаза от воздействия своего лазера при приеме отраженного импульса. Излучатель и приемник смонтированы в одном корпусе. Угол места цели определяется до ~25 градусов. Аккумулятор обеспечивал 150 измерений дальности без подзарядки, его масса всего 1кг. Дальномер был закуплен Канадой, Швецией, Данией, Италией, Австралией.

Портативные лазерные дальномеры были разработаны для пехотных подразделений и передовых артиллерийских наблюдателей. Один из таких дальномеров выполнен в виде бинокля. Источник излучения и приемник смонтированы в общем корпусе с монокулярным оптическим визиром шестикратного увеличения, в поле зрения которого имеется световое табло из светодиодов, хорошо различимых как ночью, так и днем. В лазере в качестве источника излучения используется алюминиево-иттриевый гранат, с модулятором добротности на ниобате лития. Это обеспечивает пиковую мощность в 1.5 МВт. В приемной части используется сдвоенный лавинный фотодетектор с широкополосным малошумящим усилителем, что позволяет детектировать короткие импульсы с малой мощностью. Ложные сигналы, отраженные от близлежащих предметов исключаются с помощью схемы стробирования по дальности. Источник питания - малогабаритная аккумуляторная батарея, обеспечивающая 250 измерений без подзарядки. Электронные блоки дальномера выполнены на интегральных схемах, что позволило довести массу дальномера вместе с источником питания до 2кг.

Следующий этап военного применения лазерных дальномеров - их интеграция с индивидуальным стрелковым оружием пехотинца.

Примеров может служить штурмовая винтовка F2000 (Бельгия). Вместо прицела на F2000 может устанавливаться специальный модуль управления огнем, включающий в себя лазерный дальномер и баллистический вычислитель. Основываясь на данных о дальности до цели, вычислитель выставляет прицельную марку прицела как для стрельбы из самого автомата, так и из подствольного гранатомета (если он установлен).

Американская система OICW (Objective Individual Combat Weapon - объективное индивидуальное боевое оружие) является попыткой резко повысить эффективность вооружения пехотинца. В настоящее время разработка находится на стадии создания прототипов. Начало производства планируется на 2008 год, поступление на вооружение - на 2009 год. По текущим планам, на каждое отделение пехоты будет приходится по 4 OICW. OICW представляет собой модульную конструкцию, состоящую из трех основных модулей: модуля "KE" (Kinetic Energy), представляющего собой слегка модернизированную винтовку Хеклер-Кох G36; Модуля "HE" (High Explosive), представляющего из себя самозарядный 20мм гранатомет с магазинным питанием, устанавливаемый сверху на модуль "КЕ" и использующий для стрельбы общий с модулем "КЕ" спусковой крючок; и, наконец, модуль управления огнем, включающий в себя дневной/ночной телевизионный прицелы, лазерный дальномер и баллистический вычислитель, который автоматически выставляет в объективе прицельную марку в соответствии с дальностью до цели, а также используется для программирования дистанционных взрывателей 20мм гранат. Перед выстрелом по данным с лазерного дальномера взрыватель гранаты программируется на подрыв в воздухе на заданной дальности, чем обеспечивается поражение укрытых целей осколками сверху или сбоку. Определение дальности для дистанционного подрыва осуществляется путем подсчета оборотов, совершенных гранатой в полете.

Федеральное государственное бюджетное

Образовательное учреждение

Ковровская государственная технологическая

Академия им. В.А.Дегтярева


Реферат на тему:

«Принцип работы лазерного дальномера»


Выполнил:

студент группы У-112

Терехова А.С.

Проверил:

Кузнецова С.В.


Ковров 2014


История создания

Принцип работы

Заключение

История создания лазера


Слово "лазер" составлено из начальных букв в английском словосочетании Light Amplification by Stimulated Emission of Radiation, что в переводе на русский язык означает: усиление света посредством вынужденного испускания. Таким образом, в самом термине лазер отражена так фундаментальная роль процессов вынужденного испускания, которую они играют в генераторах и усилителях когерентного света. Поэтому историю создания лазера следует начинать с 1917 г., когда Альберт Эйнштейн впервые ввел представление о вынужденном испускании.

Это был первый шаг на пути к лазеру. Следующий шаг сделал советский физик В. А. Фабрикант, указавший в 1939 г. на возможность использования вынужденного испускания для усиления электромагнитного излучения при его прохождении через вещество. Идея, высказанная В. А. Фабрикантом, предполагала использование микросистем с инверсной заселенностью уровней. Позднее, после окончания Великой Отечественной войны В. А. Фабрикант вернулся к этой идее и на основе своих исследований подал в 1951 г. (вместе с М. М. Вудынским и Ф. А. Бутаевой) заявку на изобретения способа усиления излучения при помощи вынужденного испускания. На эту заявку было выдано свидетельство, в котором под рубрикой "Предмет изобретения" было написано: "Способ усиления электромагнитных излучений (ультрафиолетового, видимого, инфракрасного и радиодиапазонов волн), отличающейся тем, что усиливаемое излучение пропускают через среду, в которой с помощью вспомогательного излучения или другим путем создают избыточною по сравнению с равновесной концентрацию атомов, других частиц или их систем на верхних энергетических уровнях, соответствующих возбужденным состояниями".

Первоначально этот способ усиления излучения оказался реализованным в радиодиапазоне, а точнее в диапазоне сверхвысоких частот (СВЧ диапазоне). В мае 1952 г. на Общесоюзной конференции по радиоспектроскопии советские физики Н. Г. Басов и А. М. Прохоров сделали доклад о принципиальной возможности создания усилителя излучения в СВЧ диапазоне. Они назвали его "молекулярным генератором" (предполагалось использовать пучок молекул аммиака). Практически одновременно предложение об использовании вынужденного испускания для усиления и генерирования миллиметровых волн было высказано в Колумбийском университете в США американским физиком Ч. Таунсом.

В 1954 г. молекулярный генератор, названный вскоре мазером, стал реальностью. Он был разработан и создан независимо и одновременно в двух точках земного шара - в Физическом институте имени П. Н. Лебедева Академии наук СССР (группой под руководством Н. Г. Басова и А. М. Прохорова) и в Колумбийском Университете в США (группой под руководством Ч. Таунса).

Впоследствии от термина "мазер" и произошел термин "лазер" в результате замены буквы "М" (начальная буква слова Microwave - микроволновой) буквой "L" (начальная буква слова Light - свет). В основе работы как мазера, так и лазера лежит один и тот же принцип - принцип, сформулированный в 1951 г. В. А. Фабрикантом. Появление мазера означало, что родилось новое направление в науке и технике. Вначале его называли квантовой радиофизикой, а позднее стали называть квантовой электроникой.

Спустя десять лет после создания мазера, в 1964 г. на церемонии, посвященной вручению Нобелевской премии, академик А. М. Прохоров сказал: " Казалось бы, что после создания мазеров в радиодиапазоне вскоре будут созданы квантовые генераторы в оптическом диапазоне. Однако этого не случилось. Они были созданы только через пять-шесть лет. Чем это объясняется? Здесь были две трудности. Первая трудность заключалась в том, что тогда не были предложены резонаторы для оптического диапазона длин волн, и вторая - не были предложены конкретные системы и методы получения инверсной заселенности в оптическом диапазоне".

Упомянутые А. М. Прохоровым шесть лет действительно были заполнены теми исследованиями, которые позволили, в конечном счете, перейти от мазера к лазеру. В 1955 г. Н. Г. Басов и А. М. Прохоров обосновали применение метода оптической накачки для создания инверсной заселенности уровней. В 1957 г. Н. Г. Басов выдвинул идею использования полупроводников для создания квантовых генераторов; при этом он предложил использовать в качестве резонатора специально обработанные поверхности самого образца. В том же 1957 г. В. А. Фабрикант и Ф. А. Бутаева наблюдали эффект оптического квантового усиления в опытах с электрическим разрядом в смеси паров ртути и небольших количествах водорода и гелия. В 1958 г. А. М. Прохоров и независимо от него американский физик Ч. Таунс теоретически обосновали возможность применения явления вынужденного испускания в оптическом диапазоне; они (а также американец Р. Дикке) выдвинули идею применения в оптическом диапазоне не объемных (как в СВЧ диапазоне), а открытых резонаторов. Заметим, что конструктивно открытый резонатор отличается от объемного тем, что убраны боковые проводящие стенки (сохранены торцовые отражатели, фиксирующие в пространстве ось резонатора) и линейные размеры резонатора выбраны большими по сравнению с длинной волны излучения.

В 1959 г. вышла в свет работа Н. Г. Басова, Б. М. Вула и Ю. М. Попова с теоретическим обоснованием идеи полупроводниковых квантовых генераторов и анализом условий их создания. Наконец, в 1960 г. появилась обосновательная статья Н. Г. Басова, О. Н. Крохина, Ю. М. Попова, в которой были всесторонне рассмотрены принципы создания и теория квантовых генераторов и усилителей в инфракрасном и видимом диапазонах. В конце статьи авторы писали: "Отсутствие принципиальных ограничений позволяет надеяться на то, что в ближайшее время будут созданы генераторы и усилители в инфракрасном и оптическом диапазонах волн".

Таким образом, интенсивные теоретические и экспериментальные исследования в СССР и США вплотную подвели ученых в самом конце 50-х годов к созданию лазера. Успех выпал на долю американского физика Т. Меймана. В 1960 г. в двух научных журналах появилось его сообщение о том, что ему удалось получить на рубине генерацию излучения в оптическом диапазоне. Так мир узнал о рождении первого "оптического мазера" - лазера на рубине. Первый образец лазера выглядел достаточно скромно: маленький рубиновый кубик (1x1x1 см), две противоположные грани которого, имели серебряное покрытие (эти грани играли роль зеркала резонатора), периодически облучались зеленым светом от лампы-вспышки высокой мощности, которая змеей охватывала рубиновый кубик. Генерируемое излучение в виде красных световых импульсов испускалось через небольшое отверстие в одной из посеребренных граней кубика.

В том же 1960 г. американскими физиками А. Джавану, В. Беннету, Э. Эрриоту удалось получить генерацию оптического излучения в электрическом разряде в смеси гелия и неона. Так родился первый газовый лазер, появление которого было фактически подготовлено экспериментальными исследованиями В. А. Фабриканта и Ф. А. Бутаевой, выполненными в 1957 г.

Начиная с 1961 г., лазеры разных типов (твердотельные и газовые) занимают прочное место в оптических лабораториях. Осваиваются новые активные среды, разрабатывается и совершенствуется технология изготовления лазеров. В 1962-1963 гг. в СССР и США одновременно создаются первые полупроводниковые лазеры.

Так начинается новый, "лазерный" период оптики. С начала своего возникновения лазерная техника развивается исключительно быстрыми темпами. Появляются новые типы лазеров и одновременно усовершенствуются старые. Это послужило причиной глубокого проникновения лазеров во многие отрасли народного хозяйства.


Принцип работы лазера


Рис.1 Схема работы лазера


Принципиальная схема лазера крайне проста (рис. 1): активный элемент, помещенный между двумя взаимно параллельными зеркалами. Зеркала образуют так называемый оптический резонатор; одно из зеркал делают слегка прозрачным, сквозь это зеркало из резонатора выходит лазерный луч. Чтобы началась генерацию лазерного излучения, необходимо "накачать" активный элемент энергией от некоторого источника (его называют устройством накачки).

Действительно, основной физический процесс, определяющий действие лазера, - это вынужденное испускание излучения. Оно происходит при взаимодействии фотона с возбужденным атомом приточном совпадении энергии фотона с энергией возбуждения атома (или молекулы).

В результате этого взаимодействия возбужденный атом переходит в невозбужденное состояние, а избыток энергии излучается в виде нового фотона с точно такой же энергией, направлением распространения и поляризацией, как и у первичного фотона. Таким образом, следствием данного процесса является наличие уже двух абсолютно идентичных фотонов. При дальнейшем взаимодействии этих фотонов с возбужденными атомами, аналогичными первому атому, может возникнуть "цепная реакция" размножения одинаковых фотонов, "летящих" абсолютно точно в одном направлении, что приведет к появлению узконаправленного светового луча. Для возникновения лавины идентичных фотонов необходима среда, в которой возбужденных атомов было бы больше чем невозбужденных, поскольку при взаимодействии фотонов с невозбужденными атомами происходило бы поглощение фотонов. Такая среда называется средой с инверсной населенностью уровней энергии (рис. 2).


Рис.2. Схематическое изображение среды с инверсной населенностью уровней энергии.


Итак, кроме вынужденного испускания фотонов возбужденными атомами происходят также процесс самопроизвольного, спонтанного испускания фотонов при переходе возбужденных атомов в невозбужденное состояние и процесс поглощения фотонов при переходе атомов из невозбужденного состояния в возбужденное. Эти три процесса, сопровождающие переходы атомов в возбужденные состояния и обратно, были постулированы, как уже говорилось выше, А. Эйнштейном в 1916 г.

Если число возбужденных атомов велико, и существует инверсная населенность уровней (в верхнем, возбужденном состоянии атомов больше, чем в нижнем, невозбужденном), то первый же фотон, родившийся в результате спонтанного излучения, вызовет нарастающую лавину появления идентичных ему фотонов. Произойдет усиление спонтанного излучения.

При одновременном рождении (принципиально это возможно) большого числа спонтанно испущенных фотонов возникает большое число лавин, каждая из которых будет распространяться в своем направлении, заданном первоначальным фотоном соответствующей лавины.

Рис.3. Спонтаннородившиеся фотоны, направление распространения которых не перпендикулярно плоскости зеркал, создают лавины фотонов, выходящие за пределы среды


В результате мы получим потоки квантов света, но не сможем получить ни направленного луча, ни высокой монохроматичности, так как каждая лавина инициировалась собственным первоначальным фотоном. Для того чтобы среду с инверсной населенностью можно было использовать для генерации лазерного луча, т. е. Направленного луча с высокой монохроматичностью, необходимо "снимать" инверсную населенность с помощью первичных фотонов, уже обладающих одной и той же направленностью излучения и одной и той же энергией, совпадающей с энергией данного перехода в атоме. В этом случае мы будем иметь лазерный усилитель света.

Существует, однако, и другой вариант получения лазерного луча, связанный с использованием системы обратной связи. На рис. 3 видно, что спонтанно родившиеся фотоны, направление распространения которых перпендикулярно плоскости зеркал, создают лавины фотонов, выходящие за пределы среды. В то же время фотоны, направление распространения которых перпендикулярно плоскости зеркал, создадут лавины, многократно усилившиеся в среде вследствие многократного отражения от зеркал. Если одно из зеркал будет обладать небольшим пропусканием, то через него будет выходить направленный поток фотонов перпендикулярно плоскости зеркал. При правильно подобранном пропускании зеркал, точной их настройке относительно друг друга и относительно продольной оси среды с инверсной населенностью обратная связь может оказаться на столько эффективной, что излучение "вбок" можно будет полностью пренебречь по сравнению с излучением, выходящим через зеркала. На практике это, действительно, удается сделать. Такую схему обратной связи называют оптическим резонатором, и именно этот тип резонатора используется в большинстве существующих лазеров.


Некоторые уникальные свойства лазерного излучения


Рассмотрим некоторые уникальные свойства лазерного излучения. При спонтанном излучении атом излучает спектральную линию конечной ширины. При лавинообразном нарастании числа вынужденно испущенных фотонов в среде с инверсной населенностью интенсивность излучения этой лавины будет возрастать, прежде всего, в центре спектральной линии данного атомного перехода, и в результате этого процесса ширина спектральной линии первоначального спонтанного излучения будет уменьшаться. На практике в специальных условиях удается сделать относительную ширину спектральной линии лазерного излучения в 107 - 108 раз меньше, чем ширина самых узких линий спонтанного излучения, наблюдаемых в природе.

Кроме сужения линии излучения в лазере удается получить расходимость луча менее 10-4 радиана, т. е. На уровне угловых секунд.

Известно, что направленный узкий луч света можно получить в принципе от любого источника, поставив на пути светового потока ряд экранов с маленькими отверстиями, расположенными на одной прямой. Представим себе, что мы взяли нагретое черное тело и с помощью диафрагм получили луч света, из которого посредством призмы или другого спектрального прибора выделили луч с шириной спектра, соответствующей ширине спектра лазерного излучения. Зная мощность лазерного излучения, ширину его спектра и угловую расходимость луча, можно с помощью формулы Планка вычислить температуру воображаемого черного тела, использованного в качестве источника светового луча, эквивалентного лазерному лучу. Этот расчет приведет нас к фантастической цифре: температура черного тела должна быть порядка десятков миллионов градусов! Удивительное свойство лазерного луча - его высокая эффективная температура (даже при относительно малой средней мощности лазерного излучения или малой энергии лазерного импульса) открывает перед исследователями большие возможности, абсолютно не осуществимые без использования лазера.


Применение лазеров в различных технологических процессах

лазер излучение технологический мощность

Появление лазеров сразу оказало и продолжает оказывать влияние на различные области науки и техники, где стало возможным применение лазеров для решения конкретных научных и технических задач. Проведенные исследования подтвердили возможность значительного улучшения многих оптических приборов и систем при использовании в качестве источника света лазеров и привели к созданию принципиально новых устройств (усилители яркости, квантовые гирометры, быстродействующие оптические схемы и др.). На глазах одного поколения произошло формирование новых научных и технических направлений - голографии, нелинейной и интегральной оптики, лазерных технологий, лазерной химии, использование лазеров для управляемого термоядерного синтеза и других задач энергетики. Ниже приведен краткий перечень применений лазеров в различных областях науки и техники, где уникальные свойства лазерного излучения обеспечили значительный прогресс или привели к совершенно новым научным и техническим решениям.

Высокая монохроматичность и когерентность лазерного излучения обеспечивают успешное применение лазеров в спектроскопии, инициировании химических реакций, в разделении изотопов, в системах измерения линейных и угловых скоростей, во всех приложениях, основанных на использовании интерференции, в системах связи и светолокации. Особо следует, очевидно, выделить применение лазеров в голографии.

Высокая плотность энергии и мощность лазерных пучков, возможность фокусировки лазерного излучения в пятно малых размеров используются в лазерных системах термоядерного синтеза, в таких технологических процессах, как лазерная резка, сварка, сверление, поверхностное закаливание и размерная обработка различных деталей. Эти же свойства и направленность лазерного излучения обеспечивают успешное применение лазеров в военной технике.

Направленность лазерного излучения, его малая расходимость применяются при провешивании направлений (в строительстве, геодезии, картографии), для целенаведения и целеуказания, в локации, в том числе и для измерения расстояний до искусственных спутников Земли, в системах связи через космос и подводной связи.

С созданием лазеров произошел колоссальный прогресс в развитии нелинейной оптики, исследовании и использовании таких явлений, как генерация гармоник, самофокусировка световых пучков, многофотонного поглощения, различных типов рассеивания света, вызванных полем лазерного излучения.

Лазеры успешно используются в медицине: в хирургии (в том числе хирургии глаза, разрушение камней в почках и т.д.) и терапии различных заболеваний, в биологии, где фокусировка в малое пятно позволяет действовать на отдельные клетки или даже на их части.

Большинство из перечисленных выше областей применения лазеров представляет собой самостоятельные и обширные разделы науки или техники и требует, естественно, самостоятельного рассмотрения. Цель приведенного здесь краткого и неполного перечня применений лазеров - проиллюстрировать то громадное влияние, которое оказало появление лазеров на развитие науки и техники, на жизнь современного общества.


Применение лазеров в ювелирной отрасли


В последние годы наметилась тенденция расширения применения лазеров в ювелирной отрасли. Наиболее широкое распространение получили станки для обработки с твердотельными лазерами на алюмо-иттриевом гранате, излучение которых достаточно хорошо поглощается основными материалами ювелирной промышленности - драгоценными металлами и камнями. Часть технологических процессов лазерной обработки полностью отработана и внедрена в ювелирной отрасли, некоторые процессы и технологии находятся в стадии разработки, и возможно, в скором времени могут быть применены для обработки изделий ювелирной промышленности. Поэтому я постараюсь рассмотреть все возможные варианты применения лазеров в технологических процессах ювелирной промышленности.

Пробивка отверстий в камнях. Одним из первых применений лазеров была пробивка отверстий в часовых камнях. Сверление отверстий всегда было чрезвычайно трудоемкой операцией. Современная лазерная технология позволяет прошивать отверстия требуемой формы в камнях различных типов с высокой скоростью и качеством.

Лазерная сварка. Одним из первых применений лазеров в ювелирной отрасли были операции ремонта различных изделий с помощью лазерной сварки. Примером применения в серийном массовом производстве лазерной сварки является лазерная сварка цепей при их производстве.

Рис. 4. Типы свариваемых цепей.


Рис. 5. Пример лазерной сварки золотой заколки


Действительно, всем известно и с успехом применяется оборудование для производства цепочек, особенно итальянских фирм. Особенностью этого процесса является его двухстадийность: сначала формируется цепочка, потом производится ее пайка традиционными методами. Лазеры позволяют производить сварку звена цепи непосредственно при его формировании на одной технологической операции и одном и том же оборудовании. Впервые такая технология была разработана для сварки золотых цепочек итальянской фирмой Lаservall. Также возможно применение сварки при соединении различных узлов ювелирных изделий, закреплении иголок знаков (рис.2), сварка большого кольца для замка и т.п. Преимущества сварки лазером - локальность ввода тепла, отсутствие флюсов и присадочного материала (припоя), низкие потери материала при сварке, возможность соединения деталей изделий с камнями, практически без нагрева всего изделия в целом. Следует особо отметить, что лазерная сварка один из наиболее сложных технологических процессов и требует отработки технологии (правил сборки, режимов сварки, подготовку и конструирование узла под сварку) практически в каждом случае применения этого процесса.

Лазерная сварка с присадкой (наплавка). Такой процесс может осуществляться аналогично сварке, но с переплавлением в сварочной зоне дополнительно присадочного материала - припоя. Так может быть решен вопрос заварки внутренних пустот и раковин изделий, вскрывающихся при полировке и шлифовки изделий после литья, а также сварка соединений с большими зазорами.

Лазерная маркировка и гравировка. Одним из наиболее интересных методов обработки драгоценных металлов является маркировка и гравировка. Современные лазеры, оснащенные компьютерным управлением, позволяют наносить на металл методом лазерной маркировки и гравировки (модификации поверхности под воздействием лазерного излучения.) практически любую графическую информацию - рисунки, надписи, вензеля, логотипы. Причем изображение можно наносить как в растровом, так и в контурном изображении. Современное оборудование позволяет перемещать лазерный луч со скоростью более двух метров в минуту и обеспечивать графическое разрешение на металле до 10...15 линий на миллиметр. В такой технике возможно изготовление с низкой себестоимостью различных подвесок, заколок, и других ювелирных изделий со своеобразной лазерной графикой (рис.3). Также интересным применением лазерной технологии гравировки является нанесение лазером различных логотипов, вензелей владельцев, товарных марок и знаков на элементы столовой посуды, как из драгоценных металлов, так и недрагоценных металлов, например для обозначения «нерж.» на клинках ножей.

Рис.6. Образцы лазерной маркировки и гравировки ювелирных изделий.


Высокое разрешение (тонкие линии), точность и повторяемость (менее 5 мкм) графичес-кого рисунка на металле позволяет эффективно применить лазер для маркировки разметки изделий под дальнейшую ручную гравировку, например при изготовлении памятных знаков, медалей или инструмента для их производства. Широкий диапазон режимов обработки на лазерах позволяет точно дозировать энергию лазерного излучения, что в свою очередь обеспечивает возможность высокоточной обработки двухслойных материалов, например ювелирных изделий из недрагоценных металлов предварительно покрытых лаком. Удаление лака под воздействием лазерного излучения без нарушения геометрических параметров поверхности металла, дает возможность провести в последующем гальваническое осаждение драгоценного металла практически любого графического изображения и получить необычное изделие.

Маркировка бриллиантов. Современное развитие лазеров и лазерной техники, совершенствование параметров лазерного излучения, разработка принципиально новых лазерных излучателей открыло возможности маркирования бриллиантов.


Рис. 4. Внешний вид маркировки синтетического алмаза.


По сообщениям журнала "Ювелирное Обозрение" американский институт геммологии с целью улучшения характеристик рынка бриллиантов приступил к маркированию лазером бриллиантов весом от 0,99 карат. Аналогичные работы проводятся и в России. Так на рис. 4. приведен пример нанесения изображения лазером на синтетический алмаз, который по физико-химическим свойствам очень близок к натуральному камню и является хорошим модельным материалом для исследования технологического процесса маркировки бриллиантов. Поскольку, размер хорошо идентифицируемых знаков на приведенном рисунке составляет около 125 мкм, то открывается возможность маркировки лазером по рундисту бриллиантов весом от 0,2 карат, так как размер рундиста при этом составляет около 200 мкм. Это очень перспективная технология.

Клеймение. Клеймение является разновидностью лазерной маркировки, когда изображение формируется на металле в результате проецирования предварительно созданного рисунка лазерным лучом. Такой метод позволяет легко получать небольшие размеры на металле и применяется для постановки именников предприятия-изготовителя изделия и пробирных клейм. Высокое разрешение позволяет получать изображения с высокой степенью защиты от воспроизведения (подделки) и может применяться для постановки пробирных клейм.

Клеймо на изделии одновременно является знаком его качества. Технология нанесения клейма лазером не приводит к потери качества изделий, не требует операций заправки клейма, обладает высокой производительностью и эргономичностью. Особенно эффективно применение лазерного клеймения на легковесные и тонкостенные изделия из драгоценных металлов.

Наземные лазерные дальномеры. Лазерная дальнометрия является одной из первых областей практического применения лазеров в зарубежной военной технике. Первые опыты относятся к 1961 году, а сейчас лазерные дальномеры используются и в наземной военной технике (артиллерийские, таковые), и в авиации (дальномеры, высотомеры, целеуказатели), и на флоте. Эта техника прошла боевые испытания во Вьетнаме и на Ближнем Востоке. В настоящее время ряд дальномеров принят на вооружение во многих армиях мира.

Задача определения расстояния между дальномером и целью сводится к измерению соответствующего интервала времени между зондирующим сигналом и сигналом, отражения от цели. Различают три метода измерения дальности в зависимости от того, какой характер модуляции лазерного излучения используется в дальномере: импульсный, фазовый или фазово-импульсный.

Сущность импульсного метода дальнометрирования состоит в том, что к объекту посылается зондирующий импульс, он же запускает временной счетчик в дальномере. Когда отраженный объектом импульс приходит к дальномеру, то он останавливает работу счетчика. По временному интервалу автоматически высвечивается перед оператором расстояние до объекта. Используя ранее рассмотренную формулу, оценим точность такого метода дальнометрирования, если известно, что точность измерения интервала времени между зондирующим и отраженным сигналами соответствует 10-9 с. Поскольку можно считать, что скорость света равна 3*1010 см/с, получим погрешность в изменении расстояния около 30 см. Специалисты считают, что для решения ряда практических задач этого вполне достаточно.

При фазовом методе дальнометрирования лазерное излучение модулируется по синусоидальному закону. При этом интенсивность излучения меняется в значительных пределах. В зависимости от дальности до объекта изменяется фаза сигнала, упавшего на объект. Отраженный от объекта сигнал придет на приемное устройство также с определенной фазой, зависящей от расстояния. Это хорошо показано в разделе геодезических дальномеров. Оценим погрешность фазового дальномера, пригодного работать в полевых условиях. Специалисты утверждают, что оператору (не очень квалифицированному солдату) не сложно определить фазу с ошибкой не более одного градуса. Если же частота модуляции лазерного излучения составляет 10 Мгц, то тогда погрешность измерения расстояния составит около 5 см.

Первый лазерный дальномер ХМ-23 прошел испытания, и был принят на вооружение армий. Он рассчитан на использование в передовых наблюдательных пунктах сухопутных войск. Источником излучения в нем является лазер на рубине с выходной мощностью 2.5 Вт и длительностью импульса 30нс. В конструкции дальномера широко используются интегральные схемы. Излучатель, приемник и оптические элементы смонтированы в моноблоке, который имеет шкалы точного отчета азимута и угла места цели. Питание дальномера производится то батареи никелево-кадмиевых аккумуляторов напряжением 24в, обеспечивающей 100 измерений дальности без подзарядки. В другом артиллерийской дальномере, также принятом на вооружение армий, имеется устройство для одновременного определения дальности до четырех целей, лежащих на одной прямой, путем последовательного стробирования дистанций 200,600,1000, 2000 и 3000м.

Интересен шведский лазерный дальномер. Он предназначен для использования в системах управления огнем бортовой корабельной и береговой артиллерии. Конструкция дальномера отличается особой прочностью, что позволяет применять его в сложенных условиях. Дальномер можно сопрягать при необходимости с усилителем изображения или телевизионным визиром. Режим работы дальномера предусматривает либо измерения через каждые 2с. в течение 20с. и с паузой между серией измерений в течение 20с. либо через каждые 4с. в течение длительного времени. Цифровые индикаторы дальности работают таким образом, что когда один из индикаторов выдает последнюю измеренную дальность, и в памяти другого хранятся четыре предыдущие измерения дистанции.

Весьма удачным лазерным дальномерам является LP-4. Он имеет в качестве модулятора добротности оптико-механический затвор. Приемная часть дальномера является одновременно визиром оператора. Диаметр входной оптической системы составляет 70мм. Приемником служит портативный фотодиод, чувствительность которого имеет максимальное значение на волне 1,06 мкм. Счетчик снабжен схемой стробирования по дальности, действующей по установке оператора от 200 до 3000м. В схеме оптического визира перед окуляром помещен защитный фильтр для предохранения глаза оператора от воздействия своего лазера при приеме отраженного импульса. Излучатель в приемник смонтированы в одном корпусе. Угол места цели определяется в пределах + 25 градусов. Аккумулятор обеспечивает 150 измерений дальности без подзарядки, его масса всего 1 кг. Дальномер прошел испытания и был закуплен в ряде стран таких как - Канада, Швеция, Дания, Италия, Австралия. Кроме того, министерство обороны Великобритании заключило контракт на поставку английской армии модифицированного дальномера LP-4 массой в 4.4.кг.

Портативные лазерные дальномеры разработаны для пехотных подразделений и передовых артиллерийской наблюдателей. Один из таких дальномеров выполнен в виде бинокля. Источник излучения и приемник смонтированы в общем корпусе, с монокулярным оптическим визиром шестикратного увеличения, в поле зрения которого имеется световое табло из светодиодов, хорошо различимых как ночью, так и днем. В лазере в качестве источника излучения используется аллюминиево-иттриевый гранат, с модулятором добротности на ниобате лития. Это обеспечивает пиковую мощность в 1,5 Мвт. В приемной части используется сдвоенный лавинный фотодетектор с широкополосным малошумящим усилителем, что позволяет детектировать короткие импульсы с малой мощностью, составляющей всего 10-9 Вт. Ложные сигналы, отраженные от близлежащих предметов, находящихся в стволе с целью, исключается с помощью схемы стробирования по дальности. Источником питания является малогабаритная аккумуляторная батарея, обеспечивающая 250 измерений без подзарядки. Электронные блоки дальномера выполнены на интегральных и гибридных схемах, что позволило довести массу дальномера вместе с источником питания до 2 кг.

Установка лазерных дальномеров на танки сразу заинтересовала зарубежных разработчиков военного вооружения. Это объясняется тем, что на танке можно ввести дальномер в систему управления огнем танка, чем повысить его боевые качества. Для этого был разработан дальномер AN/VVS-1 для танка М60А. Он не отличался по схеме от лазерного артиллерийского дальномера на рубине, однако, помимо выдачи данных о дальности на цифровое табло в счетно-решающее устройство системы управления огнем танка. При этом измерение дальности может производится как наводчиком пушки так и командиром танка. Режим работы дальномера - 15 измерений в минуту в течение одного часа. Зарубежная печать сообщает, что более совершенный дальномер, разработанный позднее, имеет пределы измерения дальности от 200 до 4700м. с точностью + 10 м, и счетно-решающее устройство, связанное с системой управления огнем танка, где совместно с другими данными обрабатывается еще 9 видов данных о боеприпасах. Это, по мнению разработчиков, дает возможность поражать цель с первого выстрела. Система управления огнем танковой пушки имеет в качестве дальномера аналог, рассмотренный ранее, но в нее входят еще семь чувственных датчиков и оптический прицел. Название установки Кобельда. В печати сообщается что она обеспечивает высокую вероятность поражения цели и несмотря на сложность этой установки переключатель механизма баллистики в положение, соответствующее выбранному типу выстрела, а затем нажать кнопку лазерного дальномера. При ведении огня по подвижной цели наводчик дополнительно опускает блокировочный переключатель управления огнем для того, чтобы сигнал от датчика скорости поворота башни при слежении за целью поступал за тахометром в вычислительное устройство, помогая вырабатывать сигнал учреждения. Лазерный дальномер, входящий в систему Кобельда, позволяет измерять дальность одновременно до двух целей, расположенных в створе. Система отличается быстродействием, что позволяет произвести выстрел в кратчайшее время.

Если для неподвижных целей вероятность поражения при использовании лазерной системы по сравнению с вероятностью поражения при использовании системы со стереодальномером не составляет большой разницы на дистанции около 1000м, и ощущается лишь на дальности 1500м, и более, то для движущихся целей выигрыш явный. Видно, что вероятность поражения движущейся цели при использовании лазерной системы по сравнению с вероятностью поражения при использовании системы со стереодальномером уже на дистанции 100м, повышается более чем в 3,5 раза, а на дальности 2000м., где система со стереодальномером становиться практически неэффективной, лазерная система обеспечивает вероятность поражения с первого выстрела около 0,3.

В армиях, помимо артиллерии и танков, лазерные дальномеры используются в системах, где требуется в короткий промежуток времени определить дальность с высокой точностью. Так, в печати сообщалось в разработана автоматическая система сопровождения воздушных целей и измерения дальности до них. Система позволяет производить точное измерение азимута, угла места и дальности. Данные могут быть записаны на магнитную ленту и обработаны на ЭВМ. Система имеет небольшие размеры и массу и размещается на подвижном фургоне. В систему входит лазер, работающий в инфракрасном диапазоне. Приемное устройство с инфракрасной телевизионной камерой, телевизионное контрольное устройство, следящее зеркало с сервопроводом, цифровой индикатор и записывающее устройство. Лазерное устройство на неодимовом стекле работает в режиме модулированной добротности и излучает энергию на волне 1,06 мкм. Мощность излучения составляет 1 Мвт в импульсе при длительности 25нс и частоте следования импульсов 100 Гц. Расходимость лазерного луча 10 мрад. В каналах сопровождения используются различные типы фотодетекторов. В приемном устройстве используется кремниевый светодиод. В канале сопровождения - решетка, состоящая из четырех фотодиодов, с помощью которых вырабатывается сигнал рассогласования при смещении цели в сторону от оси визирования по азимуту и углу места. Сигнал с каждого приемника поступает на видеоусилитель с логарифмической характеристикой и динамическим диапазоном 60 дБ. Минимальной пороговый сигнал при котором система следит за целью составляет 5*10-8 Вт. Зеркало слежения за целью приводится в движение по азимуту и углу места сервомоторами. Система слежения позволяет определять местоположение воздушных целей на удалении до 19 км. при этом точность сопровождения целей, определяемая экспериментально составляет 0,1 мрад. по азимуту и 0,2 мрад по углу места цели. Точность измерения дальности + 15 см.

Лазерные дальномеры на рубине и неодимовом стекле обеспечивают измерение расстояния до неподвижной или медленно перемещающихся объектов, поскольку частота следования импульсов небольшая. Не более одного герца. Если нужно измерять небольшие расстояния, но с большей частотой циклов измерений, то используют фазовые дальномеры с излучателем на полупроводниковых лазерах. В них в качестве источника применяется, как правило, арсенид галлия. Вот характеристика одного из дальномеров: выходная мощность 6,5 Вт в импульсе, длительность которого равна 0,2 мкс, а частота следования импульсов 20 кГц. Расходимость луча лазера составляет 350*160 мрад т.е. напоминает лепесток. При необходимости угловая расходимость луча может быть уменьшена до 2 мрад. Приемное устройство состоит из оптической системы, а фокальной плоскости которой расположена диафрагма, ограничивающая поле зрения приемника в нужном размере. Коллимация выполняется короткофокусной линзой, расположенной за диафрагмой. Рабочая длина волны составляет 0,902 мкм, а дальность действия от 0 до 400м. В печати сообщается, что эти характеристики значительно улучшены в более поздних разработках. Так, например уже разработан лазерный дальномер с дальностью действия 1500м. и точностью измерения расстояния + 30м. Этот дальномер имеет частоту следования 12,5 кГц при длительности импульсов 1 мкс. Другой дальномер, разработанный в США имеет диапазон измерения дальности от 30 до 6400м. Мощность в импульсе 100Вт, а частота следования импульсов составляет 1000 Гц.

Поскольку применяется несколько типов дальномеров, то наметилась тенденция унификации лазерных систем в виде отдельных модулей. Это упрощает их сборку, а также замену отдельных модулей в процессе эксплуатации. По оценкам специалистов, модульная конструкция лазерного дальномера обеспечивает максимум надежности и ремонтопригодности в полевых условиях.

Модуль излучателя состоит из стержня, лампы-накачки, осветителя, высоковольтного трансформатора, зеркал резонатора, модулятора добротности. В качестве источника излучения используется обычно неодимовое стекло или аллюминиево-натриевый гранат, что обеспечивает работу дальномера без системы охлаждения. Все эти элементы головки размещены в жестком цилиндрическом корпусе. Точная механическая обработка посадочных мест на обоих концах цилиндрического корпуса головки позволяет производить их быструю замену и установку без дополнительной регулировки, а это обеспечивает простоту технического обслуживания и ремонта. Для первоначальной юстировки оптической системы используется опорное зеркало, укрепленное на тщательно обработанной поверхности головки, перпендикулярно оси цилиндрического корпуса. Осветитель диффузионного типа представляет собой два входящих один в другой цилиндра между стенками которых находится слой окиси магния. Модулятор добротности рассчитан на непрерывную устойчивую работу или на импульсную с быстрым запусками. основные данные унифицированной головки таковы: длина волны - 1,06 мкм, энергия накачки - 25 Дж, энергия выходного импульса - 0,2 Дж, длительность импульса 25нс, частота следования импульсов 0,33 Гц в течение 12с допускается работа с частотой 1 Гц), угол расходимости 2 мрад. Вследствие высокой чувствительности к внутренним шумам фотодиод, предусилитель и источник питания размещаются в одном корпусе с возможно более плотной компоновкой, а в некоторых моделях все это выполнено в виде единого компактного узла. Это обеспечивает чувствительность порядка 5*10-8 Вт.

В усилителе имеется пороговая схема, возбуждающаяся в тот момент, когда импульс достигает половины максимальной амплитуды, что способствует повышению точности дальномера, ибо уменьшает влияние колебаний амплитуды приходящего импульса. Сигналы запуска и остановки генерируются этим же фотоприемником и идут по тому же тракту, что исключает систематические ошибки определения дальности. Оптическая система состоит из афокального телескопа для уменьшения расходимости лазерного луча и фокусирующего объектива для фотоприемника. Фотодиоды имеют диаметр активной площадки 50, 100, и 200 мкм. Значительному уменьшению габаритов способствует то, что приемная и передающая оптические системы совмещены, причем центральная часть используется для формирования излучения передатчика, а периферийная часть - для приема отраженного от цели сигнала.

Бортовые лазерные системы. Зарубежная печать сообщает, что в военной авиации стран США и НАТО стали широко использоваться лазерные дальномеры и высотомеры, они дают высокую точность измерения дальности или высоты, имеют небольшие габариты и легко встраиваются в систему управления огнем. Помимо этих задач на лазерные системы сейчас возложен ряд других задач. К ним относятся наведение и целеуказание. Лазерные системы наведения и целеуказания используются в вертолетах, самолетах и беспилотных летательных аппаратах. Их разделяют на полуактивные и активные. Принцип построения полуактивной системы следующий: цель облучается излучением лазера или непрерывно или импульсно, но так, чтобы исключить потерю цели лазерной системы самонаведения, для чего подбирается соответствующая частота посылок. Освещение цели производится либо с наземного, либо с воздушного наблюдательного пункта; отраженное от цели излучение лазера воспринимается головкой самонаведения, установленной на ракете или бомбе, которая определяет ошибку в рассогласовании положения оптической оси головки с траекторией полета. Эти данные вводятся в систему управления, которая и обеспечивает точное наведение ракеты или бомбы на освещаемую лазером цель.

Лазерные системы охватывают следующие виды боеприпасов: бомбы, ракеты класса "воздух-земля", морские торпеды. Боевое применение лазерных систем самонаведения определяется типом системы, характером цели и условиями боевых действий. Например, для управляемых бомб целеуказатель и бомба с головкой самонаведения могут находиться на одном носителе.

Для борьбы с тактическими наземными целями в зарубежных лазерных системах целеуказание может быть производиться с вертолетов или с помощью наземных переносных целеуказателей, а поражение выполняться с вертолетов или самолетов. Но отмечается и сложность использования целеуказателей с воздушных носителей. Для этого требуется совершенная система стабилизации для удержания лазерного пятна на цели.

Лазерные системы разведки. Для разведки с воздушных в зарубежных армиях используются самые различные средства: фотографические, телевизионные, инфракрасные, радиотехнические и др. Сообщается, что наибольшую емкость полезной информации дают средства фоторазведки. Но им присущи такие недостатки, как невозможность ведения скрытной разведки в ночных условиях, а также длительные сроки обработки передачи и предоставления материалов, несущих информацию. Передавать оперативно информацию позволяют телевизионные системы, но они не позволяют работать ночью и в сложных метеоусловиях. Радиосистемы позволяют работать ночью и в плохих метеоусловиях, но они имеют относительно невысокую разрешающую способность.

Принцип действия лазерной системы воздушной разведки заключается в следующем. Излучение с бортового носителя облучает разведуемый участок местности и расположенные на нем объекты по-разному отражают упавшее на него излучение. Можно заметить, что один и тот же объект, в зависимости от того, на каком фоне он расположен имеет различный коэффициент яркости, следовательно, он имеет демаскирующие признаки. Его легко выделить на окружающем фоне. Отраженный подстилающей поверхностью и объектами, на ней расположенными, лазерное излучение собирается приемной оптической системой и направляется на чувствительный элемент. Приемник преобразует отраженное от поверхности излучение и электрический сигнал, который будет промодулирован по амплитуде в зависимости от распределения яркости. Поскольку в лазерных системах разведки реализуется, как правило, строчно-кадровая развертка, то такая система близка к телевизионной. Узконаправленный луч лазера развертывается перпендикулярно направлению полета самолета. Одновременно с этим сканирует и диаграмма направленности приемной системы. Это обеспечивает формирование строки изображения. Развертка по кадру обеспечивается движением самолета. Изображение регистрируется либо на фотопленку, либо может производиться на экране электронно-лучевой трубки.

Голографические индикаторы на лобовом стекле. Для использования в прицельно-навигационной системе ночного видения, предназначенной для истребителя F-16 и штурмовика A-10 был разработан голографический индикатор на лобовом стекле. В связи с тем, что габариты кабины самолетов невелики, то с тем, чтобы получить большое мгновенное поле зрения индикатора разработчиками было решено разместить коллимирующий элемент под приборной доской. Оптическая система включает три раздельных элемента, каждый из которых обладает свойствами дифракционных оптических систем: центральный изогнутый элемент выполняет функции коллиматора, два других элемента служат для изменения положения лучей. Разработан метод отображения на одном экране объединенной информации: в форме растра и в штриховой форме, что достигается благодаря использованию обратного хода луча при формировании растра с интервалом времени 1.3мс, в течении которого на ТВ-экране воспроизводится информация в буквенно-цифровой форме и в виде графических данных, формируемых штриховым способом. Для экрана ТВ-трубки индикатора используется узкополосный люминофор, благодаря чему обеспечивается хорошая селективность голографической системы при воспроизведении изображений и пропускание света без розового оттенка от внешней обстановки. В процессе этой работы решалась проблема приведения наблюдаемого изображения в соответствие с изображением на индикаторе при полетах на малых высотах в ночное время (система ночного видения давала несколько увеличенное изображение), которым летчик не мог пользоваться, поскольку при этом несколько искажалась картина, которую можно бы было получить при визуальном обзоре. Исследования показали, что в этих случаях летчик теряет уверенность, стремится лететь с меньшей скоростью и на большой высоте. Необходимо было создать систему, обеспечивающую получение действительного изображения достаточно большого размера, чтобы летчик мог пилотировать самолет визуально ночью и в сложных метеоусловиях, лишь изредка сверяясь с приборами. Для этого потребовалось широкое поле индикатора, при котором расширяются возможности летчика по пилотированию самолета, обнаружению целей в стороне от маршрута и производству противозенитного маршрута и маневра атаки целей. Для обеспечения этих маневров необходимо большое поле зрения по углу места и азимуту. С увеличением угла крена самолета летчик должен иметь широкое поле зрения во вертикали. Установка коллимирующего элемента как можно выше и ближе к глазам летчика была достигнута за счет применения голографических элементов в качестве зеркал для изменения направления пучка лучей. Это хотя и усложнило конструкцию, однако дало возможность использовать простые и дешевые голографические элементы с высокой отдачей.

В США разрабатывается голографический координатор для распознавания и сопровождения целей. Основным назначением такого коррелятора является выработка и контроль сигналов управления наведения ракеты на среднем и заключительном участках траектории полета. Это достигается путем мгновенного сравнения изображений земной поверхности, находящейся в поле зрения системы в нижней и передней полусфере, с изображением различных участков земной поверхности по заданной траектории, хранимым в запоминающем устройстве системы. Таким образом обеспечивается возможность непрерывного определения местонахождения ракеты на траектории с использованием близко лежащих участков поверхности, что позволяет проводить коррекцию курса в условиях частичного затемнения местности облаками. Высокая точность на заключительном этапе полета достигается с помощью сигналов коррекции с частотой меньше 1 Гц. Для системы управления ракетой не требуется инерциальная система координат и координаты точного положения цели. Как сообщается, исходные данные для данной системы должны обеспечиваться предварительной аэро- или космической разведкой и состоять из серии последовательных кадров, представляющих собой Фурье-спектр изображения или панорамные фотографии местности, как это делается при использовании существующего площадного коррелятора местности. Применение этой схемы, как утверждают специалисты, позволит производить пуски ракет с носителя, находящегося вне зоны ПВО противника, с любой высоты и точки траектории, при любом ракурсе, обеспечит высокую помехоустойчивость, наведения управляемого оружия после пуска по заранее выбранным и хорошо замаскированным стационарным целям. Образец аппаратуры включает в себя входной объектив, устройство преобразования текущего изображения, работающего в реальном масштабе времени, голографической линзовой матрицы, согласованной с голографическим запоминающим устройством лазера, входного фотодетектора и электронных блоков. Особенностью данной схемы является использование линзовой матрицы из 100 элементов, имеющих формат 10x10. Каждая элементарная линза обеспечивает обзор всей входной аппаратуры и, следовательно, всего сигнала от поступающего на вход изображения местности или цели. На заданной фокальной плоскости образуется соответственно 100 Фурье спектров этого входного сигнала. Таким образом, мгновенный входной сигнал адресуется одновременно к 100 позициям памяти. В соответствии в линзовой матрице изготавливается голографическая память большой емкости с использованием согласованных фильтров и учетом необходимых условий применения. Сообщается, что на этапе испытания системы был выявлен ряд ее важных характеристик. Высокая обнаружительная способность как при низкой, так и при высокой контрастности изображения, способность правильно опознать входную

информацию, если даже имеется только часть ее. Возможность плавного автоматического перехода сигналов сопровождения при смене одного изображения местности другим, содержащимся в запоминающем устройстве.


Применение лазеров в компьютерной технике


Основным примером работы полупроводниковых лазеров является магнитно-оптический накопитель (МО).

МО накопитель построен на совмещении магнитного и оптического принципа хранения информации. Записывание информации производится при помощи луча лазера и магнитного поля, а считывание при помощи одного только лазера.

В процессе записи на МО диск лазерный луч нагревает определенные точки на диске, и под воздействием температуры сопротивляемость изменению полярности, для нагретой точки, резко падает, что позволяет магнитному полю изменить полярность точки. После окончания нагрева сопротивляемость снова увеличивается но полярность нагретой точки остается в соответствии с магнитным полем примененным к ней в момент нагрева. В имеющихся на сегодняшний день МО накопителях для записи информации применяются два цикла, цикл стирания и цикл записи. В процессе стирания магнитное поле имеет одинаковую полярность, соответствующую двоичным нулям. Лазерный луч нагревает последовательно весь стираемый участок и таким образом записывает на диск последовательность нулей. В цикле записи полярность магнитного поля меняется на противоположную, что соответствует двоичной единице. В этом цикле лазерный луч включается только на тех участках, которые должны содержать двоичные единицы, и оставляя участки с двоичными нулями без изменений.

В процессе чтения с МО диска используется эффект Керра, заключающийся в изменении плоскости поляризации отраженного лазерного луча, в зависимости от направления магнитного поля отражающего элемента. Отражающим элементом в данном случае является намагниченная при записи точка на поверхности диска, соответствующая одному биту хранимой информации. При считывании используется лазерный луч небольшой интенсивности, не приводящий к нагреву считываемого участка, таким образом, при считывании хранимая информация не разрушается.

Такой способ в отличие от обычного применяемого в оптических дисках не деформирует поверхность диска и позволяет повторную запись без дополнительного оборудования. Этот способ также имеет преимущество перед традиционной магнитной записью в плане надежности. Так как перемагничеваниие участков диска возможно только под действием высокой температуры, то вероятность случайного перемагничевания очень низкая, в отличие от традиционной магнитной записи, к потери которой могут привести случайные магнитные поля.

Область применения МО дисков определяется его высокими характеристиками по надежности, объему и сменяемости. МО диск необходим для задач, требующих большого дискового объема, это такие задачи, как САПР, обработка изображений звука. Однако небольшая скорость доступа к данным, не дает возможности применять МО диски для задач с критичной реактивностью систем. Поэтому применение МО дисков в таких задачах сводится к хранению на них временной или резервной информации. Для МО дисков очень выгодным использованием является резервное копирование жестких дисков или баз данных. В отличии от традиционно применяемых для этих целей стримеров, при хранение резервной информации на МО дисках, существенно увеличивается скорость восстановления данных после сбоя. Это объясняется тем, что МО диски являются устройствами с произвольным доступом, что позволяет восстанавливать только те данные, в которых обнаружился сбой. Кроме этого при таком способе восстановления нет необходимости полностью останавливать систему до полного восстановления данных. Эти достоинства в сочетании с высокой надежностью хранения информации делают применение МО дисков при резервном копировании выгодным, хотя и более дорогим по сравнению со стримерами.

Применение МО дисков, также целесообразно при работе с приватной информацией больших объемов. Легкая сменяемость дисков позволяет использовать их только во время работы, не заботясь об охране компьютера в нерабочее время, данные могут хранится в отдельном, охраняемом месте. Это же свойство делает МО диски незаменимыми в ситуации, когда необходимо перевозить большие объемы с места на место, например с работы домой и обратно.

Основные перспективы развития МО дисков связанны прежде всего с увеличением скорости записи данных. Медленная скорость определяется в первую очередь двухпроходным алгоритмом записи. В этом алгоритме нули и единицы пишутся за разные проходы, из-за того, что магнитное поле, задающие направление поляризации конкретных точек на диске, не может изменять свое направление достаточно быстро.

Наиболее реальная альтернатива двухпроходной записи - это технология, основанная на изменение фазового состояния. Такая система уже реализована некоторыми фирмами производителями. Существуют еще несколько разработок в этом направлении, связанные с полимерными красителями и модуляциями магнитного поля и мощности излучения лазера.

Технология основанная на изменении фазового состояния, основана на способности вещества переходить из кристаллического состояния в аморфное. Достаточно осветить некоторую точку на поверхности диска лучом лазера определенной мощности, как вещество в этой точке перейдет в аморфное состояние. При этом изменяется отражающая способность диска в этой точке. Запись информации происходит значительно быстрее, но при этом процессе деформируется поверхность диска, что ограничивает число циклов перезаписи.

Технология основанная на полимерных красителях, также допускает повторную запись. При этой технологии поверхность диска покрывается двумя слоями полимеров, каждый из которых чувствителен к свету определенной частоты. Для записи используется частота, игнорируемая верхним слоем, но вызывающая реакцию в нижнем. В точке падения луча нижний слой разбухает и образует выпуклость, влияющую на отражающие свойства поверхности диска. Для стирания используется другая частота, на которую реагирует только верхний слой полимера, при реакции выпуклость сглаживается. Этот метод, как и предыдущий, имеет ограниченное число циклов записи, так как при записи происходит деформация поверхности.

В настоящие время уже разрабатывается технология позволяющая менять полярность магнитного поля на противоположную всего за несколько наносекунд. Это позволит изменять магнитное поле синхронно с поступлением данных на запись. Существует также технология, построенная на модуляции излучения лазера. В этой технологии дисковод работает в трех режимах - режим чтения с низкой интенсивностью, режим записи со средней интенсивностью и режим записи с высокой интенсивностью. Модуляция интенсивности лазерного луча требует более сложной структуры диска, и дополнения механизма дисковода инициализирующим магнитом, установленным перед магнитом смещения и имеющим противоположную полярность. В самом простом случае диск имеет два рабочих слоя - инициализирующий и записывающий. Инициализирующий слой сделан из такого материала, что инициализирующий магнит может изменять его полярность без дополнительного воздействия лазера. В процессе записи инициализирующий слой записывается нулями, а при воздействии лазерного луча средней интенсивности записывающий слой намагничивается инициализирующим, при воздействии луча высокой интенсивности, записывающий слой намагничивается в соответствии с полярностью магнита смещения. Таким образом, запись данных может происходить за один проход, при переключении мощности лазера.

Безусловно, МО диски перспективные и бурно развивающиеся устройства, которые могут решать назревающие проблемы с большими объемами информации. Но их дальнейшее развитие зависит не только от технологии записи на них, но и от прогресса в области других носителей информации. И если не будет изобретен более эффективный способ хранения информации, МО диски, возможно, займут доминирующие роли.

Заключение


За последнее время в России и за рубежом были проведены обширные исследования в области квантовой электроники созданы разнообразные лазеры, а также приборы, основанные на их использовании. Лазеры теперь применяются в локации и в связи, в космосе и на земле, в медицине и строительстве, в вычислительной технике и промышленности, в военной технике. Появилось новое научное направление - голография, становление и развитие которой также немыслимо без лазеров.

Однако, ограниченный объем этой работы не позволил отметить такой важный аспект квантовой электроники, как лазерный термоядерный синтез, об использовании лазерного излучения для получения термоядерной плазмы, устойчивость светового сжатия. Не рассмотрены такие важные аспекты, как лазерное разделение изотопов, лазерное получение чистых веществ, лазерная химия и многое другое.

Мы еще не знаем, а вдруг может произойти научная революция в мире, основанная на сегодняшних достижениях лазерной техники. Вполне возможно, что лет через 50 действительность окажется гораздо богаче нашей фантазии…

Может быть, переместившись в машине времени на 50 лет вперед, мы увидим мир, затаившийся под прицелом лазеров. Мощные лазеры, нацелившись из укрытий на космические аппараты и спутники. Специальные зеркала на околоземных орбитах приготовились отразить в нужном направлении беспощадный лазерный луч, направить его на нужную цель. На огромной высоте зависли мощные гамма-лазеры, излучение которых способно в считанные секунды уничтожить все живое в любом городе на Земле. И негде укрыться от грозного лазерного луча - разве, что спрятаться в глубоких подземных убежищах.

Но это все фантазии. И не дай бог она превратиться в реальность.

Все это зависит от нас, от наших действий сегодня, от того, насколько активно все мы будет относиться к достижениям нашего разума правильно, и направлять наши решения в достойное русло этой необъятной реки, имя которой - лазер.

Список использованной литературы

  1. Авиация и космонавтика № 5 1981г. с 44-45
  2. Горный С.Г. «Применение лазеров в ювелирной отрасли» 2002г.
  3. Донина Н.М. Возникновение квантовой электроники. М.: Наука, 1974.
  4. Квантовая электроника М.: Советская энциклопедия, 1969.
  5. Карлов Н.В. Лекции по квантовой электронике. М.: Наука, 1988.
  6. Лазеры в авиации (под ред. Сидорина В.М.) Воениздат 1982г.
  7. Петровский В.И. Локаторы на лазерах Воениздат
  8. Реди Дж. Промышленной применение лазеров Мир 1991г.
  9. Приезжев А.В., Тучин В.В., Шубочкин Л.П. Лазерная диагностика в биологии и медицине. М.: Наука, 1989.
  10. Тарасов Л.В. Знакомьтесь - лазеры Радио и связь 1993 г
  11. Тарасов Л.В. Лазеры действительность и надежды изд Наука 1985г
  12. Тарасов Л.В. Физика процессов в генераторах когерентного оптического
  13. Федоров Б.Ф. Лазерные приборы и системы летательных аппаратов Машиностроение 1988г.
Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Часто приходится встречать мнение, что с помощью лазера расстояние измеряют только путем прямого измерения времени «полета» лазерного импульса от лазера до отражающего объекта и обратно. На самом деле, этот метод (его называют импульсным или времяпролетным, TOF) применяют в основном в тех случаях, когда расстояния до нужного объекта достаточно велики (>100м). Так как скорость света очень велика, то за один импульс лазера достаточно сложно с большой точностью измерить время пролета света, и следовательно, расстояние. Свет проходит 1 метр примерно за 3.3 нс, так что точность измерения времени должна быть наносекундная, хотя точность измерения расстояния при этом все равно будет составлять десятки сантиметров. Для измерения временных интервалов с такой точностью используют ПЛИС и специализированные микросхемы.

Однако существуют и другие лазерные методы изменения расстояния, одним из них является фазовый. В этом методе, в отличие от предыдущего, лазер работает постоянно, но его излучение амплитудно модулируется сигналом определенной частоты (обычно это частоты меньше 500МГц). Длина волны лазера при этом остается неизменной (обычно выбирается лазер 500 — 1100 нм).
Отраженное от объекта излучение принимается фотоприемником, и его фаза сравнивается с фазой опорного сигнала — от лазера. Наличие задержки при распространении волны создает сдвиг фаз, который и измеряется дальномером.
Расстояние определяется по формуле:

Где с — скорость света, f — частота модуляции лазера, фи — фазовый сдвиг.

Эта формула справедлива только в том случае, если расстояние до объекта меньше половины длины волны модулирующего сигнала, которая равна с / 2f.
Если частота модуляции равна 10МГц, то измеряемое расстояние может доходить до 15 метров, и при изменении расстояния от 0 до 15 метров разность фаз будет меняться от 0 до 360 градусов. Изменение сдвига фаз на 1 градус в таком случае соответствует перемещению объекта примерно на 4 см.
При превышении этого расстояния возникает неоднозначность — невозможно определить, сколько периодов волны укладывается в измеряемом расстоянии. Для разрешения неоднозначности частоту модуляции лазера переключают, после чего решают получившуюся систему уравнений.

Самый простой случай — использование двух частот, на низкой приблизительно определяют расстояние до объекта (но максимальное расстояние все равно ограничено), на высокой определяют расстояние с нужной точностью — при одинаковой точности измерения фазового сдвига, при использовании высокой частоты точность измерения расстояния будет заметно выше.

Так как существуют относительно простые способы измерять фазовый сдвиг с высокой точностью, то точность измерения расстояния в таких дальномерах может доходить до 0.5 мм. Именно фазовый принцип используется в дальномерах, требующих большой точности измерения — геодезических дальномерах, лазерных рулетках, сканирующих дальномерах, устанавливаемых на роботах.

Однако у метода есть и недостатки — мощность излучения постоянно работающего лазера заметно меньше, чем у импульсного лазера, что не позволяет использовать фазовые дальномеры для измерения больших расстояний. Кроме того, измерение фазы с нужной точностью может занимать определенное время, что ограничивает быстродействие прибора.

Наиболее важный процесс в таком дальномере — это измерение разности фаз сигналов, которая и определяет точность измерения расстояния. Существуют различные способы измерения разности фаз, как аналоговые, так и цифровые. Аналоговые значительно проще, цифровые дают большую точность. При этом цифровыми методами измерить разность фаз высокочастотных сигналов сложнее — временная задержка между сигналами измеряется наносекундами (эта задержка возникает также, как и в импульсном дальномере).

Для того, чтобы упростить задачу, используют гетеродинное преобразование сигналов — сигналы от фотоприемника и лазера по отдельности смешивают с сигналом близкой частоты, который формируется дополнительным генератором — гетеродином. Частоты модулирующего сигнала и гетеродина различаются на килогерцы или единицы мегагерц. Из полученных сигналов при помощи ФНЧ выделяют сигналы разностной частоты. Разность фаз сигналов в таком преобразовании не изменяется. После этого разность фаз полученных низкочастотных сигналов измерить цифровыми методами значительно проще — можно легко оцифровать сигналы низкоскоростным АЦП, или измерить задержку между сигналами (при понижении частоты она заметно увеличивается) при помощи счетчика. Оба метода достаточно просто реализовать на микроконтроллере.

Есть и другой способ измерения разности фаз — цифровое синхронное детектирование. Если частота модулирующего сигнала не сильно велика (меньше 15 МГц), то такой сигнал можно оцифровать высокоскоростным АЦП, синхронизированным с сигналом модуляции лазера. Из теоремы Котельникова следует, что частота дискретизации при этом должна быть в два раза выше частоты модуляции лазера. Однако, так как оцифровывается узкополосный сигнал (кроме частоты модуляции, других сигналов на входе АЦП нет), то можно использовать метод субдискретизации, благодаря которому частоту дискретизации АЦП можно заметно снизить — до единиц мегагерц. Понятно, что аналоговая часть дальномера при этом упрощается.

Проблему точного измерения натурных расстояний на местности, в геодезии, строительном и военном деле удалось решить только с появлением легкого переносного лазерного дальномера. С развитием микропроцессорной техники у лазерных приборов появилась возможность не только измерять, но и рассчитывать удаление по косвенным измерениям. В технике измерения больших расстояний с разработкой и внедрением дальномеров на лазерном излучении произошла маленькая революция.

Как измеряет лазерный дальномер

Основной принцип работы лазерного дальномера базируется на свойствах когерентного излучения. Для гражданских версий применяют два основных метода:

  1. Измерение времени прохождения расстояния импульсом света от прибора до измеряемой точки и обратно. По данным внутреннего таймера, запускаемого синхронно с лазерным импульсом, микропроцессор вычисляет удаление до объекта;
  2. Считывание фазы пришедшего отраженного лазерного излучения. В этом случае на выходе из дальномера луч модулируется с частотой до 100 МГц, и отраженный от объекта сигнал с 99,9% вероятности будет иметь, отличную от начальной, фазовую характеристику. По разнице между начальным и конечным углом закрутки луча вычисляется пройденное расстояние.

К сведению! На практике чаще всего используют оба метода одновременно, поэтому иногда говорят, что у лазерных дальномеров три принципа измерения.

Наибольшей точностью обладает фазовый метод, но его используют при измерении расстояния максимум в десяток метров. Чтобы посчитать удаление с точностью в несколько миллиметров, дальномер должен полноценно «видеть» точку лазерного излучения на поверхности объекта. Для средних и дальних расстояний используется импульсно-фазовый метод, и для больших удалений преимущественно импульсный.

Строительные и геодезические дальномеры профессионального качества при ясной, но не солнечной погоде стабильно работают на удаление до 250 м. В утренней дымке, легком тумане, дождике лазерное излучение рассеивается, поэтому работающий прибор даст определенную погрешность.

Практические измерения дальномером

Как работает полевой дальномер. Чтобы измерить расстояние до определенной точки, необходимо надежно зафиксировать прибор, лучше всего с помощью штатива или универсального крепления. Сориентировать излучатель в направлении поверхности, расстояние до которой будет измеряться, запустить режим измерения и выждать определенное время, пока устройство выдаст серию лазерных импульсов и рассчитает удаление. На строительной площадке, чтобы измерить расстояние между стенами, дальномер просто укладывают на ящик или на бетонный пол.

Качество и точность измерения в немалой степени зависит от того, насколько эффективно отражает поверхность, на которую падает луч лазера. Зачастую на шероховатые, ржавые, рыхлые и насыпные поверхности устанавливают так называемую мишень - пластиковый элемент с калиброванным альбедо.

Наиболее удачные модели лазерных дальномеров

Современный прибор для измерения расстояния с помощью лазерного излучения изготавливается на относительно мощных твердотельных или полупроводниковых лазерах. Для гражданских целей используют только полупроводниковые излучатели. Для промышленного и бытового измерения расстояния лазерные дальномеры выпускают в нескольких вариантах оформления корпуса и системы измерения:

  1. Строительные и контрольные приборы изготавливают в виде электронного блока, размером чуть больше кнопочного мобильного телефона. Обычно корпус запечатывают в водо и пыленепроницаемый чехол, что сильно упрощает пользование в полевых условиях и на строительной площадке;
  2. Дальномеры повышенной точности изготавливают в форм-факторе ручной видеокамеры или нивелира. В дополнение к процессорному блоку и фотоприемнику устройство комплектуется видеоискателем, значительно упрощающим наведение излучателя на объект измерения;
  3. Встроенные лазерные дальномеры применяются для геодезической техники,в охотничьих биноклях, в любых оптических устройствах, требующих точного измерения расстояния, в том числе в военных прицелах и видеосканерах.

К сведению! Очень часто гражданские лазерные дальномеры изготавливаются и выпускаются на основе военных конструкций, с искусственно заниженными точностью и дальностью измерений.

Среди гражданских приборов наиболее известной в стране является продукция немецких компаний «Leica» и «Bosch», российской «Сondtrol» и китайской «Sndway». На долю продукции этих фирм относится 75% всех продаж на отечественном рынке.

Немецкое качество лазерных дальномеров

На сегодняшний день оптика и фотоаппараты компании «Leica» известны, как образец высококачественной оптики и точной механики. Не является исключением и лазерный дальномер «Leica». В качестве примера можно привести модель «Leica Disto D210».

Компактная, размером с мобильный телефон, «Leica Disto D210». спроектирована для измерений в отсутствии помех в виде запылений, тумана, атмосферных осадков. Производитель рекомендует использовать лазерный дальномер «Leica» преимущественно внутри помещений готовых строительных объектов. Модель «Leica Disto D210». оснащена наружным защитным чехлом, поэтому ограничения по эксплуатации касаются в первую очередь диапазона температур - от 0 о до +40 о. При низких температурах лазерный дальномер «Leica» может работать, но с увеличенной погрешностью измерений.

Размеры «Leica Disto D210». соответственно 11,1х4,3 см при толщине корпуса в 2,3 см. Габариты корпуса позволяют нормально держать лазерный дальномер «Leica» и выполнять набор команд на клавиатуре пальцами одной руки.

Конструкция «Leica Disto D210». рассчитана на дальность измерения в 60 м с точностью до полутора миллиметров. Устройство прибора позволяет хранить в памяти 10 значений последних измерений, выполнять трекинговые операции, размечать отрезки, рассчитывать расстояния по косвенным измерениям и использовать простейшие формулы планиметрии. Стоит такая «Leica» сегодня не менее 200 долл., что примерно в три-четыре раза дороже китайских аналогов. Лазерные дальномеры «Bosch PLR 50C» аналогичной функциональности стоят на 20% дешевле, но отзывы большинства пользователей о результатах практического пользования лишний раз подтверждают высокую репутацию Лейки.

Российские и китайские лазерные дальномеры

Сегодня рынок буквально забит относительно дешевыми китайскими аналогами известных брендов. Из предлагаемого ассортимента особенно стоит присмотреться к продукции компании «Sndway». Прежде всего, следует отметить, что стоимость самых доступных моделей «Sndway SWT40» в китайских интернет-магазинах едва превышает 25 долл. На российском рынке можно купить за 2500-2700 руб.

Модель «Sndway SWT40» можно назвать бюджетным или домашним вариантом дальномера, но только потому, что производитель ограничил максимальную дальность захвата точки луча в 40 м. Точность измерения составляет 2 мм, что для бытовых целей более чем достаточно. Питания хватает на 600-700 измерений, при заявленных производителем 800 циклах. Стоит отметить отдельно высокое качество сборки корпуса, что само по себе говорит о высокой культуре производства.

Пришедшие на смену ленточным рулеткам и металлическим метрам электронные дальномеры с цифровыми микропроцессорами значительно снижают трудовые затраты при проведении измерительных работ. Это не только дорогостоящая эффектная игрушка, с помощью которой можно решать текущие бытовые задачи, но и профессиональный инструмент, повышающий качество и производительность измерительных работ на этапах оценки, проектирования и строительства.

Функциональные возможности

Основная функция лазерных дальномеров – проведение дистанционных линейных измерений. В зависимости от встроенных алгоритмов, можно проводить также автоматический расчет периметра, объема закрытых помещений, также вычислять расстояния до отдаленных ландшафтных объектов и делать угловые и диагональные замеры.

Некоторые модели оснащены функцией трекинга, который позволяет делать разметку на определенно расстоянии от объекта. Лазерные дальномеры могут иметь опцию непрерывного измерения, которая позволяет установить заданное расстояние от нулевой точки, путем направления луча вдоль определенной линии.

Еще один из режимов позволяет вычислить стороны трапеции (например, покатой крыши), исходя из замеров трех остальных параметров (соответственно – высоты стен и горизонтали пола).







Опция теоремы Пифагора позволяет делать косвенный расчет труднодоступных отрезков, получая величину одной из сторон треугольника, исходя из длины одного из катетов и гипотенузы. Блокнот для сохранения и функция запоминания данных – еще одно преимущество электронных измерительных приборов.

Типы дальномеров по принципу работы

Фазовые дальномеры обладают высокой точностью, но ограничены в дальности. Расчеты производятся по сдвигу фаз направленной и отраженной лазерной волны.

Импульсный дальномер производит калькуляцию производной времени прохождения лазерного луча и скорости света. Этот принцип обеспечивает максимальную дальность измерений, и наиболее подходит для использования на открытой местности.

Специальные устройства корректируют обработку сигнала, обеспечивая точность замеров. Импульсные дальномеры, в силу своей усложненной конструкции, стоят дороже фазовых.

Параметры выбора

Первый параметр, который поможет определиться, какой дальномер лучше подойдет под конкретный запрос – максимальная дальность действия. Затем нужно обратить внимание на мощность микропроцессора, которой определяется скорость работы и функциональные характеристики прибора.

Точность измерения лазерных дальномеров колеблется в диапазоне 1-1,5 мм, и не является решающим показателем выбора. Погрешности при замерах могут быть вызваны и внешними факторами, которые устраняются путем дополнительных мер, например установкой мишеней для коррекции специфических поверхностей с повышенными поглощающим или отражающим эффектом.

Очки со светофильтрами и модели, спроектированные под различные погодные условия могут решить профессиональные задачи любой сложности. Ценовой класс зависит от набора опций, особенностей комплектации и авторитета производителя.

Дополнительные устройства

Различные модели дальномеров, как оно судить по подборке фото, выглядят почти одинаково: лицевая панель оснащена дисплеем и кнопками управления, на фронтальной расположены излучатель и приемник, в некоторых случаях оптическое устройство.

Точность измерений зависит как от технических параметров, так и от правильного расположения дальномера, поэтому для проверки нулевого показателя рекомендуется пользоваться пузырьковым уровнем.






В некоторых моделях есть такой встроенный прибор, облегчающий корректировку положения по вертикали и горизонтали. Профессиональные модификации для топографических работ оснащаются оптическим визором.

Выдвижные упоры и хомуты предусмотрены для закрепления на нулевых поверхностях или штативах. Наличие съемных батареек, индикатора затрат энергии и автоматического отключения значительно облегчают использование. Современные модели обладают возможностью подключения к компьютеру и использования съемной карты памяти.

Класс защищенности корпуса и качество дисплея выбираются в зависимости от внешних условий, в которых будет использоваться прибор.

Правила безопасности

Инструкции для определенных моделей дальномера, содержат свод правил использования и хранения прибора. Помимо специфических требований, обусловленных конструктивными особенностями, все лазерные приборы не подлежат разборке и ремонту вне стен специализированных мастерских.

Прибор нужно хранить в специальном чехле, исключить его перегрев или переохлаждение, оберегать от ударов и падения. При работе с дальномером запрещается направление луча на людей и животных.

Фото лазерных дальномеров